An in-plane nano-mechanics approach to achieve reversible resonance control of photonic crystal nanocavities.

Control of photonic crystal resonances in conjunction with large spectral shifting is critical in achieving reconfigurable photonic crystal devices. We propose a simple approach to achieve nano-mechanical control of photonic crystal resonances within a compact integrated on-chip approach. Three different tip designs utilizing an in-plane nano-mechanical tuning approach are shown to achieve reversible and low-loss resonance control on a one-dimensional photonic crystal nanocavity. The proposed nano-mechanical approach driven by a sub-micron micro-electromechanical system integrated on low loss suspended feeding nanowire waveguide, achieved relatively large resonance spectral shifts of up to 18 nm at a driving voltage of 25 V. Such designs may potentially be used as tunable optical filters or switches.

[1]  H. Chong,et al.  Tuning of photonic crystal waveguide microcavity by thermooptic effect , 2004, IEEE Photonics Technology Letters.

[2]  Kazuhiro Hane,et al.  A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator. , 2008, Optics express.

[3]  K. Hane,et al.  Submicron silicon waveguide optical switch driven by microelectromechanical actuator , 2008 .

[4]  H. Herzig,et al.  Tuning the resonance of a photonic crystal microcavity with an AFM probe. , 2006, Optics express.

[5]  E. L. Hu,et al.  Tuning photonic nanocavities by atomic force microscope nano-oxidation , 2006 .

[6]  Michal Lipson,et al.  Low modal volume dipole-like dielectric slab resonator. , 2008, Optics express.

[7]  Philippe Lalanne,et al.  Near-field interactions between a subwavelength tip and a small-volume photonic-crystal nanocavity , 2007 .

[8]  H. Hamann,et al.  Active control of slow light on a chip with photonic crystal waveguides , 2005, Nature.

[9]  V. Subramaniam,et al.  Nano-mechanical tuning and imaging of a photonic crystal micro-cavity resonance. , 2006, Optics express.

[10]  M. K. Andrews,et al.  A comparison of squeeze-film theory with measurements on a microstructure , 1993 .

[11]  Yong-Hee Lee,et al.  One-dimensional parabolic-beam photonic crystal laser. , 2010, Optics express.

[12]  M.C. Wu,et al.  Silicon Microtoroidal Resonators With Integrated MEMS Tunable Coupler , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[13]  T. Asano,et al.  High-Q photonic nanocavity in a two-dimensional photonic crystal , 2003, Nature.

[14]  Henry I. Smith,et al.  Photonic-bandgap microcavities in optical waveguides , 1997, Nature.

[15]  Hans Peter Herzig,et al.  Applications of SOI-based optical MEMS , 2002 .

[16]  K. Vahala Optical microcavities : Photonic technologies , 2003 .

[17]  Snjezana Tomljenovic-Hanic,et al.  Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration. , 2006, Optics express.

[18]  Yuancheng Sun,et al.  Squeeze-film air damping of thick hole-plate , 2003 .

[19]  D. Wiersma,et al.  Spectral tuning and near-field imaging of photonic crystal microcavities , 2008 .

[20]  Susumu Noda,et al.  Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs , 2001 .

[21]  Kazuhiro Hane,et al.  Photonic crystal waveguide switch with a microelectromechanical actuator , 2006 .

[22]  Marko Loncar,et al.  Photonic crystal nanobeam lasers , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[23]  Philip Dowd,et al.  Tilted folded-beam suspension for extending the stable travel range of comb-drive actuators , 2003 .

[24]  P. Deotare,et al.  High quality factor photonic crystal nanobeam cavities , 2009, 0901.4158.

[25]  T. Asano,et al.  Ultra-high-Q photonic double-heterostructure nanocavity , 2005 .

[26]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[27]  Toshihiko Baba,et al.  Low Loss Intersection of Si Photonic Wire Waveguides , 2004 .

[28]  Pierre M. Petroff,et al.  Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes , 2005, Science.

[29]  J. Harris,et al.  Nanobeam photonic crystal cavity quantum dot laser. , 2010, Optics express.

[30]  Adele C. Tamboli,et al.  Tuning photonic crystal nanocavity modes by wet chemical digital etching , 2005 .

[31]  Kazuhiro Hane,et al.  Phase-shifter using submicron silicon waveguide couplers with ultra-small electro-mechanical actuator. , 2010, Optics express.

[32]  P. Deotare,et al.  Programmable photonic crystal nanobeam cavities. , 2010, Optics express.

[33]  P. Deotare,et al.  Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide , 2010, 1002.1319.

[34]  Marc Sorel,et al.  Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI). , 2008, Optics express.

[35]  Maria Kafesaki,et al.  Controlling the resonance of a photonic crystal microcavity by a near-field probe. , 2005, Physical review letters.

[36]  M. Eich,et al.  Electro-optically tunable photonic crystals , 2005 .

[37]  Masaya Notomi,et al.  On-Chip All-Optical Switching and Memory by Silicon Photonic Crystal Nanocavities , 2008 .

[38]  P. Deotare,et al.  Coupled photonic crystal nanobeam cavities , 2009, 0905.0109.

[39]  Y. Vlasov,et al.  Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides. , 2003, Optics express.

[40]  H. Toshiyoshi,et al.  MEMS-actuated photonic crystal switches , 2006, IEEE Photonics Technology Letters.