Complex and quaternionic analyticity in chiral and gauge theories, I☆

A comparative and systematic study is made of 2-dimensional CP(n) σ-models and new 4-dimensional HP(n) σ-models and their respective embedded U(1) and Sp(1) holonomic gauge field structures. The central theme is complex versus quaternionic analyticity. A unified formulation is achieved by way of Cartan's method of moving frames adapted to the hypercomplex geometries of the harmonic symmetric spaces CP(n) ≈ SU(n + 1)SU(n) × U(1) and HP(n) ≈ Sp(n + 1)Sp(n) × Sp(1) respectively. Elements of complex Kahler manifolds are applied to a detailed analysis of the CP(n) σ-model and its instanton sector. Generalization to any Kahlerian σ-model is manifest. On the basis of Cauchy-Riemann analyticity, Kahlerian models are shown to have an infinite number of local continuity equations. In a parallel manner, new 4-dimensional conformally invariant HP(n) σ-models are constructed. Focus is on the latter's hidden local gauge invariance in their holonomy group Sp(n) × Sp(1) which allows a natural embedding of the Sp(1) ≈ SU(2) pure Yang-Mills theory. The associated quaternionic structure is discussed in light of both quaternionic quantum mechanics and Kahlerian geometry. In this chiral setting, the SU(2) Yang-Mills duality equations are cast into quaternionic Cauchy-Riemann equations over S4 ≈ HP(1), the conformal spacetime. In analogy to the CP(n) case, their rational solutions are the most general (8n − 3) parameter instantons where the associated algebraic nonlinear equations of the type of Atiyah, Drinfeld, Hitchin, and Manin are now expressed in a new conformally invariant form. Geometrically, the SU(2) instantons solve the Frenet-Serret equations for quaternionic holomorphic curves; they are conformal maps from HP(1) into HP(n) with n their second Chern index. Fueter's quaternionic analysis is presented, then applied: Fueter functions are particularly suited for the solutions of 't Hooft, of Jackiw, Nohl and Rebbi, and of Witten and Peng, as well as the self-dual finite action per unit time solution of Bogomol'nyi, Prasad and Sommerfield. Generalizing the latter, a new solution with unit Chern index and finite action per unit spacetime cell is found. It is expressed in terms of the quaternionic fourfold quasi-periodic Weierstrass Zeta function. Finally the essence of our method is revealed in terms of universal connections over Stiefel bundles; generalization to real, complex and quaternionic classifying Grassmanian σ-models with their embedded SO(m), SU(m) and Sp(m) gauge fields is outlined in terms of gauge invariant projector valued chiral fields. Other outstanding problems are briefly discussed.

[1]  M. Daniel,et al.  The Geometrical Setting of Gauge Theories of the {Yang-Mills} Type , 1980 .

[2]  M. Narasimhan,et al.  EXISTENCE OF UNIVERSAL CONNECTIONS II. , 1961 .

[3]  A. Polyakov Hidden symmetry of the two-dimensional chiral fields , 1977 .

[4]  Robert Gulliver,et al.  A Theory of Branched Immersions of Surfaces , 1973 .

[5]  M. Atiyah,et al.  Construction of Instantons , 1978 .

[6]  S. Helgason Differential Geometry and Symmetric Spaces , 1964 .

[7]  On a Possible Generalization of Quantum Mechanics , 1960 .

[8]  V. Zakharov,et al.  Yang-Mills equations as inverse scattering problem , 1978 .

[9]  S. Ruijsenaars,et al.  On finite action solutions of the nonlinear σ-model , 1979 .

[10]  A. Borel Les Bouts Des Espaces Homogenes de Groupes De Lie , 1953 .

[11]  E. Kähler Über eine bemerkenswerte Hermitesche Metrik , 1933 .

[12]  J. Milnor Construction of Universal Bundles, II , 1956 .

[13]  John B. Kogut,et al.  An introduction to lattice gauge theory and spin systems , 1979 .

[14]  Shiing-Shen Chern,et al.  On the Volume Decreasing Property of a Class of Real Harmonic Mappings , 1975 .

[15]  R. Jackiw Quantum Meaning of Classical Field Theory , 1977 .

[16]  N. Steenrod Topology of Fibre Bundles , 1951 .

[17]  G. Woo Pseudoparticle configurations in two‐dimensional ferromagnets , 1977 .

[18]  K. Imaeda A new formulation of classical electrodynamics , 1976 .

[19]  N. K. Pak,et al.  Chiral solitons and current algebra , 1979 .

[20]  M. Dubois-Violette,et al.  Gauge theory in terms of projector valued fields , 1979 .

[21]  A. Perelomov,et al.  A few remarks on chiral theories with sophisticated topology , 1978 .

[22]  D. Fairlie,et al.  A green function for the general self-dual gauge field , 1978 .

[23]  Phillip A. Griffiths,et al.  On Cartan’s method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry , 1974 .

[24]  A. Polyakov String Representations and Hidden Symmetries for Gauge Fields , 1979 .

[25]  J. Eells,et al.  A Report on Harmonic Maps , 1978 .

[26]  G. Girardi,et al.  On the self-duality of solutions of the Yang-Mills equations , 1978 .

[27]  M. Forger,et al.  On the dual symmetry of the non-linear sigma models , 1979 .

[28]  F. Gürsey On a conform-invariant spinor wave equation , 1956 .

[29]  V. Drinfeld,et al.  A description of instantons , 1978 .

[30]  M. Scafati Metrica hermitiana ellittica in uno spazio proiettivo quaternionale , 1962 .

[31]  M. Luscher,et al.  Scattering of Massless Lumps and Nonlocal Charges in the Two-Dimensional Classical Nonlinear Sigma Model , 1978 .

[32]  S. Chern Topics in differential geometry , 1951 .

[33]  Michael Atiyah,et al.  Topological aspects of Yang-Mills theory , 1978 .

[34]  J. Ishida,et al.  On the chiral connection between the ferromagnet, the axisymmetric gravitational problem and the SU(2) vacuum gauge field , 1978 .

[35]  F. J. Ernst NEW FORMULATION OF THE AXIALLY SYMMETRIC GRAVITATIONAL FIELD PROBLEM. II. , 1968 .

[36]  M. Jafarizadeh,et al.  Quaternionic multi S4 ≃ HP(1) gravitational and chiral instantons☆ , 1979 .

[37]  K. Pohlmeyer,et al.  Integrable Hamiltonian systems and interactions through quadratic constraints , 1976 .

[38]  R. Morrow,et al.  Foundations of Quantum Mechanics , 1968 .

[39]  E. Cartan,et al.  Sur certaines formes Riemanniennes remarquables des géométries à groupe fondamental simple , 1927 .

[40]  Ryu Sasaki,et al.  Soliton equations and pseudospherical surfaces , 1979 .

[41]  L. Marchildon,et al.  The graded Lie groups SU(2,2/1) and OSp(1/4) , 1978 .

[42]  M. Lüscher Quantum non-local charges and absence of particle production in the two-dimensional non-linear σ-model , 1978 .

[43]  Humitaka Satō,et al.  New Series of Exact Solutions for Gravitational Fields of Spinning Masses , 1973 .

[44]  H. Lawson,et al.  Stability and gap phenomena for Yang-Mills fields. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[45]  A. Luther XVII. Bosonized fermions in three dimensions , 1979 .

[46]  J. Eells,et al.  Harmonic Mappings of Riemannian Manifolds , 1964 .

[47]  Y. Goldschmidt,et al.  On the existence of local conservation laws in various generalizations of the nonlinear σ-model , 1979 .

[48]  P. Mitter,et al.  Local stability of deformations of self-dual Yang-Mills fields on S4 , 1978 .

[49]  W. Chow On Compact Complex Analytic Varieties , 1949 .

[50]  William Rowan Hamilton,et al.  Elements of Quaternions , 1969 .

[51]  G. Rota,et al.  Topics in algebraic and analytic geometry , 1976 .

[52]  R. Fueter Über die analytische Darstellung der regulären Funktionen einer Quaternionenvariablen , 1935 .

[53]  F. Lund Example of a Relativistic, Completely Integrable, Hamiltonian System , 1977 .

[54]  Charles W. Misner,et al.  Harmonic maps as models for physical theories , 1978 .

[55]  C. Sommerfield,et al.  Exact Classical Solution for the 't Hooft Monopole and the Julia-Zee Dyon , 1975 .

[56]  A. Trautman,et al.  Natural connections on Stiefel bundles are sourceless gauge fields , 1978 .

[57]  Shigeru Ishihara,et al.  Quaternion Kählerian manifolds , 1974 .

[58]  R. Flume A local uniqueness theorem for (anti-) self-dual solutions of SU(2) Yang-Mills equations , 1978 .

[59]  A. Polyakov,et al.  Pseudoparticle Solutions of the Yang-Mills Equations , 1975 .

[60]  V. Weisskopf,et al.  A New Extended Model of Hadrons , 1974 .

[61]  H. Tze Born duality and strings in hadrodynamics and electrodynamics , 1974 .

[62]  R. Matzner,et al.  Gravitational Field Equations for Sources with Axial Symmetry and Angular Momentum , 1967 .

[63]  Edward J. Flaherty,et al.  Hermitian and Kahlerian geometry in relativity , 1975 .

[64]  Topology of quaternionic manifolds , 1966 .

[65]  R. Fueter Integralsätze für reguläre Funktionen einer Quaternionen-Variablen , 1937 .

[66]  Humitaka Satō,et al.  New Exact Solution for the Gravitational Field of a Spinning Mass , 1972 .

[67]  S. Adler CLASSICAL ALGEBRAIC CHROMODYNAMICS , 1978 .

[68]  Quaternionengeometrie und das Abbildungsproblem der regulären Quaternionenfunktionen , 1944 .

[69]  M. Lüscher The Secret Long Range Force in Quantum Field Theories With Instantons , 1978 .

[70]  Louis Nirenberg,et al.  Complex Analytic Coordinates in Almost Complex Manifolds , 1957 .

[71]  A. M. Din,et al.  Properties of general classical CPn−1 solutions , 1980 .

[72]  A. Belavin,et al.  Quantum fluctuations of multi-instanton solutions , 1979 .

[73]  A. Sinha,et al.  Non-local continuity equations for self-dual SU(N) Yang-Mills fields , 1979 .

[74]  S. Adler Theory of static quark forces , 1978 .

[75]  E. Witten Some exact multipseudoparticle solutions of classical Yang--Mills theory , 1977 .

[76]  S. Chern The geometry of $G$-structures , 1966 .

[77]  Elements of a theory of intrinsic functions on algebras , 1960 .

[78]  J. Fröhlich Confinement in Zn lattice gauge theories implies confinement in SU(n) lattice Higgs theories , 1979 .

[79]  A. Trautman Solutions of the Maxwell and Yang-Mills equations associated with hopf fibrings , 1977 .

[80]  D. Gross Meron configurations in the two-dimensional O(3) σ-model , 1978 .

[81]  Run Fueter Die Funktionentheorie der DifferentialgleichungenΔu=0 undΔΔu=0 mit vier reellen Variablen , 1934 .

[82]  Shin-sheng Tai,et al.  Minimum imbeddings of compact symmetric spaces of rank one , 1968 .

[83]  R. Fueter Analytische Funktionen einer Quaternionenvariablen , 1932 .

[84]  E. Cremmer,et al.  The SO(8) supergravity , 1979 .

[85]  C. Nohl,et al.  Conformal Properties of Pseudoparticle Configurations , 1977 .

[86]  R. Moufang,et al.  Zur Struktur von Alternativkörpern , 1935 .

[87]  P. Vecchia,et al.  A 1/n Expandable Series of Nonlinear Sigma Models with Instantons , 1978 .

[88]  S. Goldberg,et al.  Curvature and Homology , 1962 .

[89]  S. Chern Complex manifolds without potential theory , 1979 .

[90]  R. Sasaki Geometrization of soliton equations , 1979 .

[91]  K. Pohlmeyer,et al.  Continuity equations for the classical Euclidean two-dimensional non-linear σ-models , 1978 .