Structure Inference in Sum-Product Networks using Infinite Sum-Product Trees

Sum-Product Networks (SPNs) are a highly efficient type of a deep probabilistic model that allows exact inference in time linear in the size of the network. In previous work, several heuristic structure learning approaches for SPNs have been developed, which are prone to overfitting compared to a purely Bayesian model. In this work, we propose a principled approach to structure learning in SPNs by introducing infinite Sum-Product Trees (SPTs). Our approach is the first correct and successful extension of SPNs to a Bayesian nonparametric model. We show that infinite SPTs can be used successfully to discover SPN structures and outperform infinite Gaussian mixture models in the task of density estimation.

[1]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[2]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[3]  Carl E. Rasmussen,et al.  The Infinite Gaussian Mixture Model , 1999, NIPS.

[4]  P. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 1999 .

[5]  M. Escobar,et al.  Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .

[6]  Jouko Lampinen,et al.  Bayesian Model Assessment and Comparison Using Cross-Validation Predictive Densities , 2002, Neural Computation.

[7]  Adnan Darwiche,et al.  A differential approach to inference in Bayesian networks , 2000, JACM.

[8]  G. Reaven,et al.  An attempt to define the nature of chemical diabetes using a multidimensional analysis , 2004, Diabetologia.

[9]  Thomas L. Griffiths,et al.  The nested chinese restaurant process and bayesian nonparametric inference of topic hierarchies , 2007, JACM.

[10]  Michael I. Jordan,et al.  Tree-Structured Stick Breaking for Hierarchical Data , 2010, NIPS.

[11]  Yoshua Bengio,et al.  Shallow vs. Deep Sum-Product Networks , 2011, NIPS.

[12]  Pedro M. Domingos,et al.  Sum-product networks: A new deep architecture , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[13]  Joshua B. Tenenbaum,et al.  A probabilistic model of cross-categorization , 2011, Cognition.

[14]  Dan Ventura,et al.  Learning the Architecture of Sum-Product Networks Using Clustering on Variables , 2012, NIPS.

[15]  David W. Scott,et al.  Multivariate Density Estimation and Visualization , 2012 .

[16]  Pedro M. Domingos,et al.  Discriminative Learning of Sum-Product Networks , 2012, NIPS.

[17]  Mohamed R. Amer,et al.  Sum-product networks for modeling activities with stochastic structure , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Franz Pernkopf,et al.  Greedy Part-Wise Learning of Sum-Product Networks , 2013, ECML/PKDD.

[19]  Pedro M. Domingos,et al.  Learning the Structure of Sum-Product Networks , 2013, ICML.

[20]  Wei-Chen Cheng,et al.  Language modeling with sum-product networks , 2014, INTERSPEECH.

[21]  Sang-Woo Lee,et al.  Non-Parametric Bayesian Sum-Product Networks , 2014 .

[22]  Pedro M. Domingos,et al.  Learning Selective Sum-Product Networks , 2014 .

[23]  Daniel Lowd,et al.  Learning Sum-Product Networks with Direct and Indirect Variable Interactions , 2014, ICML.

[24]  Ali Ghodsi,et al.  Learning the Structure of Sum-Product Networks via an SVD-based Algorithm , 2015, UAI.

[25]  Dan Ventura,et al.  Greedy Structure Search for Sum-Product Networks , 2015, IJCAI.

[26]  Han Zhao,et al.  Collapsed Variational Inference for Sum-Product Networks , 2016, ICML.

[27]  Pascal Poupart,et al.  A Unified Approach for Learning the Parameters of Sum-Product Networks , 2016, NIPS.

[28]  Franz Pernkopf,et al.  On the Latent Variable Interpretation in Sum-Product Networks , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.