Simulated Annealing for Convex Optimization
暂无分享,去创建一个
[1] David Applegate,et al. Sampling and integration of near log-concave functions , 1991, STOC '91.
[2] Nicholas G. Polson,et al. Sampling from log-concave distributions , 1994 .
[3] M. Simonovits,et al. Random walks and an O * ( n 5 ) volume algorithm for convex bodies , 1997 .
[4] Zelda B. Zabinsky,et al. Stochastic Adaptive Search for Global Optimization , 2003 .
[5] Mark Jerrum,et al. Simulated annealing for graph bisection , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.
[6] Gregory B. Sorkin,et al. Efficient simulated annealing on fractal energy landscapes , 1991, Algorithmica.
[7] C. D. Gelatt,et al. Optimization by Simulated Annealing , 1983, Science.
[8] Santosh S. Vempala,et al. Hit-and-run from a corner , 2004, STOC '04.
[9] Graham Wood,et al. Stochastic Adaptive Search for Global Optimization , 2005 .
[10] Bruce E. Hajek,et al. Cooling Schedules for Optimal Annealing , 1988, Math. Oper. Res..
[11] Miklós Simonovits,et al. Random walks and an O*(n5) volume algorithm for convex bodies , 1997, Random Struct. Algorithms.
[12] Santosh S. Vempala,et al. Simulated annealing in convex bodies and an O*(n4) volume algorithm , 2006, J. Comput. Syst. Sci..
[13] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[14] J. G. Pierce,et al. Geometric Algorithms and Combinatorial Optimization , 2016 .
[15] M. Rudelson. Random Vectors in the Isotropic Position , 1996, math/9608208.
[16] S. Vempala. Geometric Random Walks: a Survey , 2007 .
[17] Robert L. Smith,et al. Improving Hit-and-Run for global optimization , 1993, J. Glob. Optim..
[18] William H. Press,et al. The Art of Scientific Computing Second Edition , 1998 .
[19] A. Prékopa. On logarithmic concave measures and functions , 1973 .
[20] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[21] Eric Vigoda,et al. A polynomial-time approximation algorithm for the permanent of a matrix with non-negative entries , 2001, STOC '01.
[22] S. Vempala,et al. The geometry of logconcave functions and sampling algorithms , 2007 .
[23] Eric Vigoda,et al. A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries , 2004, JACM.
[24] James C. Spall,et al. Introduction to stochastic search and optimization - estimation, simulation, and control , 2003, Wiley-Interscience series in discrete mathematics and optimization.
[25] Santosh S. Vempala,et al. Simulated annealing in convex bodies and an O*(n/sup 4/) volume algorithm , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..
[26] A. Prékopa. Logarithmic concave measures with applications to stochastic programming , 1971 .
[27] L. Leindler. On a Certain Converse of Hölder’s Inequality , 1972 .
[28] Santosh S. Vempala,et al. Solving convex programs by random walks , 2004, JACM.
[29] A. Dinghas. Über eine Klasse superadditiver Mengenfunktionale von Brunn-Minkowski-Lusternikschem Typus , 1957 .
[30] Santosh S. Vempala,et al. The geometry of logconcave functions and sampling algorithms , 2007, Random Struct. Algorithms.