Semirings and Formal Power Series

This chapter presents basic foundations for the theory of weighted automata: semirings and formal power series. A fundamental question is how to extend the star operation (Kleene iteration) from languages to series. For this, we investigate ordered, complete and continuous semirings and the related concepts of star semirings and Conway semirings. We derive natural properties for the Kleene star of cycle-free series and also of matrices often used to analyze the behavior of weighted automata. Finally, we investigate cycle-free linear equations which provide a useful tool for proving identities for formal power series.

[1]  J. Conway Regular algebra and finite machines , 1971 .

[2]  J. V. Oldfield,et al.  Graphs and networks , 1974 .

[3]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[4]  Jessica L. Hamblen,et al.  Guide to the literature , 1975 .

[5]  G. Markowsky Chain-complete posets and directed sets with applications , 1976 .

[6]  Daniel J. Lehmann,et al.  Algebraic Structures for Transitive Closure , 1976, Theor. Comput. Sci..

[7]  Joseph A. Goguen,et al.  Initial Algebra Semantics and Continuous Algebras , 1977, J. ACM.

[8]  Arto Salomaa,et al.  Automata-Theoretic Aspects of Formal Power Series , 1978, Texts and Monographs in Computer Science.

[9]  W. Wechler The concept of fuzziness in automata and language theory , 1978 .

[10]  U. Zimmermann Linear and combinatorial optimization in ordered algebraic structures , 1981 .

[11]  M. Nivat Laboratoire d'informatique théorique et programmation , 1981 .

[12]  Irène Guessarian,et al.  Algebraic semantics , 1981, Lecture Notes in Computer Science.

[13]  Jirí Adámek,et al.  Tree Constructions of Free Continuous Algebras , 1982, J. Comput. Syst. Sci..

[14]  Zoltán Ésik,et al.  Some varieties of iteration theories , 1984, Bull. EATCS.

[15]  J. Berstel,et al.  Les séries rationnelles et leurs langages , 1984 .

[16]  Michael A. Arbib,et al.  Algebraic Approaches to Program Semantics , 1986, Texts and Monographs in Computer Science.

[17]  Jacques Sakarovitch Kleene's theorem revisited , 1986, IMYCS.

[18]  Arto Salomaa,et al.  Semirings, Automata, Languages , 1985, EATCS Monographs on Theoretical Computer Science.

[19]  Werner Kuich,et al.  The Kleene and the Parikh Theorem in Complete Semirings , 1987, ICALP.

[20]  Daniel Krob Monoides et semi-anneaux complets , 1987 .

[21]  Jozef Kelemen,et al.  Selected contributions on Trends, techniques, and problems in theoretical computer science. 4th International Meeting of Young Computer Scientists , 1987 .

[22]  Thomas Sudkamp,et al.  Languages and Machines , 1988 .

[23]  Monoides et semi-anneaux continus , 1988 .

[24]  Dominique Perrin,et al.  Finite Automata , 1958, Philosophy.

[25]  G. Karner On limits in complete semirings , 1992 .

[26]  Dexter Kozen A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events , 1994, Inf. Comput..

[27]  R. Wiegandt,et al.  Halbringe algebraische theorie und anwendungen in der informatik , 1996 .

[28]  Werner Kuich,et al.  Semirings and Formal Power Series: Their Relevance to Formal Languages and Automata , 1997, Handbook of Formal Languages.

[29]  U. Hebisch,et al.  Semirings: Algebraic Theory and Applications in Computer Science , 1998 .

[30]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[31]  J. Golan Semirings and their applications , 1999 .

[32]  Mehryar Mohri,et al.  Semiring Frameworks and Algorithms for Shortest-Distance Problems , 2002, J. Autom. Lang. Comb..

[33]  K. Glazek,et al.  A Guide to the Literature on Semirings and their Applications in Mathematics and Information Sciences: With Complete Bibliography , 2002 .

[34]  Zoltán Ésik,et al.  Locally Closed Semirings , 2002 .

[35]  J. Sakarovitch Eléments de théorie des automates , 2003 .

[36]  Georg Karner Continuous monoids and semirings , 2004, Theor. Comput. Sci..

[37]  Victor Mitrana,et al.  Formal Languages and Applications , 2004 .

[38]  Zoltán Ésik,et al.  Equational Axioms for a Theory of Automata , 2004 .

[39]  X. Zhao Locally Closed Semirings and Iteration Semirings , 2005 .

[40]  Geert Jan Olsder,et al.  Max Plus at Work-Modelling and Analysis of Synchronized Systems , 2006 .

[41]  Jirí Adámek,et al.  What Are Iteration Theories? , 2007, MFCS.

[42]  Paul Gastin,et al.  On Aperiodic and Star-Free Formal Power Series in Partially Commuting Variables , 2007, Theory of Computing Systems.

[43]  M. Droste,et al.  Handbook of Weighted Automata , 2009 .

[44]  I. Petre,et al.  Algebraic Systems and Pushdown Automata , 2009 .

[45]  J. Sakarovitch Rational and Recognisable Power Series , 2009 .