Empirical study of exact algorithms for the multi-objective spanning tree

The multi-objective spanning tree ( MoST ) is an extension of the minimum spanning tree problem ( MST ) that, as well as its single-objective counterpart, arises in several practical applications. However, unlike the MST , for which there are polynomial-time algorithms that solve it, the MoST is NP-hard. Several researchers proposed techniques to solve the MoST , each of those methods with specific potentialities and limitations. In this study, we examine those methods and divide them into two categories regarding their outcomes: Pareto optimal sets and Pareto optimal fronts. To compare the techniques from the two groups, we investigated their behavior on 2, 3 and 4-objective instances from different classes. We report the results of a computational experiment on 8100 complete and grid graphs in which we analyze specific features of each algorithm as well as the computational effort required to solve the instances.

[1]  David Corne,et al.  Benchmark Problem Generators and Results for the Multiobjective Degree-Constrained Minimum Spanning , 1997 .

[2]  Patrice Perny,et al.  A preference-based approach to spanning trees and shortest paths problems**** , 2005, Eur. J. Oper. Res..

[3]  Thomas Stützle,et al.  Pareto Local Optimum Sets in the Biobjective Traveling Salesman Problem: An Experimental Study , 2004, Metaheuristics for Multiobjective Optimisation.

[4]  Thomas L. Magnanti,et al.  Network Design and Transportation Planning: Models and Algorithms , 1984, Transp. Sci..

[5]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[6]  Mitsuo Gen,et al.  Genetic algorithm approach on multi-criteria minimum spanning tree problem , 1999, Eur. J. Oper. Res..

[7]  Khalil S. Hindi,et al.  Minimum-weight spanning tree algorithms A survey and empirical study , 2001, Comput. Oper. Res..

[8]  Marco César Goldbarg,et al.  A Memetic Algorithm for the Biobjective Minimum Spanning Tree Problem , 2006, EvoCOP.

[9]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[10]  Woo-Sung Jung,et al.  The effect of a market factor on information flow between stocks using the minimal spanning tree , 2009, 0905.2043.

[11]  Dalessandro Soares Vianna,et al.  A GRASP algorithm for the multi-criteria minimum spanning tree problem , 2008, Ann. Oper. Res..

[12]  Jan Karlsson,et al.  Modular gene expression in Poplar: a multilayer network approach. , 2009, The New phytologist.

[13]  Huowang Chen,et al.  The multi-criteria minimum spanning tree problem based genetic algorithm , 2007, Inf. Sci..

[14]  Luigi Di Puglia Pugliese,et al.  A new approach for the multiobjective minimum spanning tree , 2018, Comput. Oper. Res..

[15]  Horst W. Hamacher,et al.  A Survey on Multiple Objective Minimum Spanning Tree Problems , 2009, Algorithmics of Large and Complex Networks.

[16]  Will N. Browne,et al.  A Knowledge-Based Evolution Strategy for the Multi-Objective Minimum Spanning Tree Problem , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[17]  Peter Grindrod,et al.  Extending evolutionary algorithms to discover tri-criterion and non-supported solutions for the minimum spanning tree problem , 2009, GECCO.

[18]  S. Alonso,et al.  The problem of the optimal biobjective spanning tree , 1998, Eur. J. Oper. Res..

[20]  Balaji Raghavachari,et al.  Approximation algorithms for the capacitated minimum spanning tree problem and its variants in network design , 2004, TALG.

[21]  Qingfu Zhang,et al.  Multiobjective evolutionary algorithms: A survey of the state of the art , 2011, Swarm Evol. Comput..

[22]  Linda Douw,et al.  Epilepsy surgery outcome and functional network alterations in longitudinal MEG: A minimum spanning tree analysis , 2014, NeuroImage.

[23]  Cornelis J. Stam,et al.  Functional brain network analysis using minimum spanning trees in Multiple Sclerosis: An MEG source-space study , 2014, NeuroImage.

[24]  K. Sörensen,et al.  AN ALGORITHM TO GENERATE ALL SPANNING TREES OF A GRAPH IN ORDER OF INCREASING COST , 2005 .

[25]  Marco César Goldbarg,et al.  A new transgenetic approach for the biobjective spanning tree problem , 2010, IEEE Congress on Evolutionary Computation.

[26]  Tomasz Radzik,et al.  Computing all efficient solutions of the biobjective minimum spanning tree problem , 2008, Comput. Oper. Res..

[27]  Alejandro Crema,et al.  A method for finding the set of non-dominated vectors for multiple objective integer linear programs , 2004, Eur. J. Oper. Res..

[28]  Francis Sourd,et al.  A Multiobjective Branch-and-Bound Framework: Application to the Biobjective Spanning Tree Problem , 2008, INFORMS J. Comput..

[29]  David W. Corne,et al.  Enumeration of Pareto optimal multi-criteria spanning trees - a proof of the incorrectness of Zhou and Gen's proposed algorithm , 2002, Eur. J. Oper. Res..

[30]  Paolo Toth,et al.  Exact algorithms for the vehicle routing problem, based on spanning tree and shortest path relaxations , 1981, Math. Program..

[31]  Luigi Di Puglia Pugliese,et al.  Dynamic programming for spanning tree problems: application to the multi-objective case , 2015, Optim. Lett..

[32]  João C. N. Clímaco,et al.  Multicriteria path and tree problems: discussion on exact algorithms and applications , 2012, Int. Trans. Oper. Res..

[33]  R. Prim Shortest connection networks and some generalizations , 1957 .

[34]  Kurt Mehlhorn,et al.  LEDA: a platform for combinatorial and geometric computing , 1997, CACM.

[35]  Madeleine Davis-Moradkhan,et al.  Multi-Criterion Optimization in Minimum Spanning Trees , 2010, Stud. Inform. Univ..

[36]  Murat Köksalan,et al.  Finding all nondominated points of multi-objective integer programs , 2013, J. Glob. Optim..

[37]  Mikael Lind,et al.  On bicriterion minimal spanning trees: An approximation , 1996, Comput. Oper. Res..

[38]  Enrique Alba,et al.  Multi-objective optimization using metaheuristics: non-standard algorithms , 2012, Int. Trans. Oper. Res..

[39]  Xavier Gandibleux,et al.  A survey and annotated bibliography of multiobjective combinatorial optimization , 2000, OR Spectr..

[40]  Horst W. Hamacher,et al.  On spanning tree problems with multiple objectives , 1994, Ann. Oper. Res..

[41]  Thomas Stützle,et al.  A study of stochastic local search algorithms for the biobjective QAP with correlated flow matrices , 2006, Eur. J. Oper. Res..

[42]  Marco César Goldbarg,et al.  A Plasmid Based Transgenetic Algorithm for the Biobjective Minimum Spanning Tree Problem , 2009, EvoCOP.

[43]  BERNARD M. WAXMAN,et al.  Routing of multipoint connections , 1988, IEEE J. Sel. Areas Commun..

[44]  João C. Dias,et al.  Sovereign debt crisis in the European Union: A minimum spanning tree approach , 2012 .

[45]  J. Barrow,et al.  Minimal spanning trees, filaments and galaxy clustering , 1985 .

[46]  H. W. Corley,et al.  Efficient spanning trees , 1985 .

[47]  Marco César Goldbarg,et al.  A New Evolutionary Algorithm for the Bi-objective Minimum Spanning Tree , 2007, Seventh International Conference on Intelligent Systems Design and Applications (ISDA 2007).

[48]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[49]  Yash P. Aneja,et al.  Minimal spanning tree subject to a side constraint , 1982, Comput. Oper. Res..

[50]  Antonio Sedeño-Noda,et al.  Optimality conditions in preference-based spanning tree problems , 2009, Eur. J. Oper. Res..

[51]  Patrice Perny,et al.  Choquet-based optimisation in multiobjective shortest path and spanning tree problems , 2010, Eur. J. Oper. Res..