Palaeoproterozoic Supercontinents and Global Evolution

The Palaeoproterozoic era (2500–1600 Ma) was a critical period of Earth history, with dynamic evolution from the deep planetary interior to its surface environment. Several lines of geological evidence suggest the existence of at least one pre-Rodinia supercontinent, named Nuna or Columbia, which formed near the end of Palaeoproterozoic time. Prior to this assembly, there may have been an older supercontinent (Kenorland) or perhaps only independently drifting supercratons. The tectonic records of amalgamation and dispersal of these ancient landmasses provide a framework that links processes of the deep Earth with those of its fluid envelope. The sixteen papers in this volume present reviews and new analytical data that span the geological record of Palaeoproterozoic Earth and provide a current picture of Palaeoproterozoic research. The volume provides a useful reference book for students and professional geoscientists interested in this important period of global evolution.

[1]  J. Meert,et al.  Paleomagnetic constraints on Neoproterozoic `Snowball Earth' continental reconstructions , 2013 .

[2]  Louis Moresi,et al.  Influence of supercontinents on deep mantle flow , 2009 .

[3]  R. Aster,et al.  Evidence and implications for a widespread magmatic shutdown for 250 My on Earth , 2009 .

[4]  R. Hocking,et al.  A review of the geology and geodynamic evolution of the Palaeoproterozoic Earaheedy Basin, Western Australia , 2009 .

[5]  M. Wingate,et al.  Geochronology and paleomagnetism of mafic igneous rocks in the Olenek Uplift, northern Siberia: Implications for Mesoproterozoic supercontinents and paleogeography , 2009 .

[6]  A. Whittington,et al.  Temperature-dependent thermal diffusivity of the Earth’s crust and implications for magmatism , 2009, Nature.

[7]  D. Sumner,et al.  Correlating multiple Neoarchean–Paleoproterozoic impact spherule layers between South Africa and Western Australia , 2009 .

[8]  N. Beukes,et al.  Origin of two distinct multiple-sulfur isotope compositions of pyrite in the 2.5Ga Klein Naute Formation, Griqualand West Basin, South Africa , 2009 .

[9]  A. J. Kaufman,et al.  Lithofacies control on multiple-sulfur isotope records and Neoarchean sulfur cycles , 2009 .

[10]  F. Westall,et al.  Life on an Anaerobic Planet , 2009, Science.

[11]  M. Gouy,et al.  Parallel adaptations to high temperatures in the Archaean eon , 2008, Nature.

[12]  N. Marshall,et al.  Giant Deep-Sea Protist Produces Bilaterian-like Traces , 2008, Current Biology.

[13]  D. Bradley Passive margins through earth history , 2008 .

[14]  J. Korenaga Plate tectonics, flood basalts and the evolution of Earth’s oceans , 2008 .

[15]  V. Shcherbakov,et al.  Palaeointensity and palaeodirectional studies of early Riphaean dyke complexes in the Lake Ladoga region (Northwestern Russia) , 2008 .

[16]  I. Fletcher,et al.  Reassessing the first appearance of eukaryotes and cyanobacteria , 2008, Nature.

[17]  S. Sutton,et al.  Oxidation state of iron in komatiitic melt inclusions indicates hot Archaean mantle , 2008, Nature.

[18]  G. Lister,et al.  Configuration of the Late Paleoproterozoic Supercontinent Columbia: Insights from radiating mafic dyke swarms , 2008 .

[19]  G. Lister,et al.  Tectonic constraints on 1.3~1.2 Ga final breakup of Columbia supercontinent from a giant radiating dyke swarm , 2008 .

[20]  R. Summons,et al.  Methylhopane biomarker hydrocarbons in Hamersley Province sediments provide evidence for Neoarchean aerobiosis , 2008 .

[21]  Guy Masters,et al.  A thermochemical boundary layer at the base of Earth's outer core and independent estimate of core heat flux , 2008 .

[22]  I. Campbell,et al.  Formation of supercontinents linked to increases in atmospheric oxygen , 2008 .

[23]  P. V. Keken,et al.  Tectonics of early Earth: Some geodynamic considerations , 2008 .

[24]  S. Pisarevsky,et al.  Plate tectonics on early Earth? Weighing the paleomagnetic evidence , 2008 .

[25]  M. Whitehouse,et al.  A review of the isotopic and trace element evidence for mantle and crustal processes in the Hadean and Archean: Implications for the onset of plate tectonic subduction , 2008 .

[26]  J. Korenaga Urey ratio and the structure and evolution of Earth's mantle , 2008 .

[27]  Masaki Ogawa Mantle convection: A review , 2008 .

[28]  T. Elliott,et al.  The evolution of He Isotopes in the convecting mantle and the preservation of high 3He/4He ratios , 2008 .

[29]  M. Hamilton,et al.  The Paleoproterozoic Marathon Large Igneous Province: New evidence for a 2.1 Ga long-lived mantle plume event along the southern margin of the North American Superior Province , 2008 .

[30]  P. Tackley Geodynamics: Layer cake or plum pudding? , 2008 .

[31]  K. Karlstrom,et al.  Assembly, configuration, and break-up history of Rodinia: A synthesis , 2008 .

[32]  N. Coltice,et al.  A crystallizing dense magma ocean at the base of the Earth’s mantle , 2007, Nature.

[33]  A. J. Kaufman,et al.  Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry , 2007, Nature.

[34]  D. Lowe,et al.  Tectonic controls on atmospheric, climatic, and biological evolution 3.5-2.4Ga , 2007 .

[35]  W. Nijman,et al.  Dual role of seawater and hydrothermal fluids in Early Archean chert formation: Evidence from silicon isotopes , 2007 .

[36]  J. Piper The Neoproterozoic supercontinent Palaeopangaea , 2007 .

[37]  A. J. Kaufman,et al.  Late Archean Biospheric Oxygenation and Atmospheric Evolution , 2007, Science.

[38]  A. J. Kaufman,et al.  A Whiff of Oxygen Before the Great Oxidation Event? , 2007, Science.

[39]  D. Pearson,et al.  A link between large mantle melting events and continent growth seen in osmium isotopes , 2007, Nature.

[40]  Richard B. Gaines,et al.  Molecular evidence of Late Archean archaea and the presence of a subsurface hydrothermal biosphere , 2007, Proceedings of the National Academy of Sciences.

[41]  R. Riding,et al.  Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria , 2007 .

[42]  E. Hiatt,et al.  Physical and chemical evidence of the 1850 Ma Sudbury impact event in the Baraga Group, Michigan , 2007 .

[43]  L. Kump,et al.  Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago , 2007, Nature.

[44]  G. Shields A normalised seawater strontium isotope curve: possible implications for Neoproterozoic-Cambrian weathering rates and the further oxygenation of the Earth , 2007 .

[45]  M. Whitehouse,et al.  Temporal constraints on the Paleoproterozoic Lomagundi-Jatuli carbon isotopic event , 2007 .

[46]  W. Zang Deposition and deformation of late Archaean sediments and preservation of microfossils in the Harris Greenstone Domain, Gawler Craton, South Australia , 2007 .

[47]  Graham A. Shields,et al.  Palaeoclimatology: Evidence for hot early oceans? , 2007, Nature.

[48]  M. Hamilton,et al.  Paleomagnetism, U–Pb geochronology, and geochemistry of Lac Esprit and other dyke swarms, James Bay area, Quebec, and implications for Paleoproterozoic deformation of the Superior Province , 2007 .

[49]  S. Mojzsis,et al.  Multiple sulfur isotopes from Paleoproterozoic Huronian interglacial sediments and the rise of atmospheric oxygen , 2007 .

[50]  S. Lalonde,et al.  Was There Really an Archean Phosphate Crisis? , 2007, Science.

[51]  M. Brown,et al.  Metamorphic Conditions in Orogenic Belts: A Record of Secular Change , 2007 .

[52]  C. M. Gray,et al.  Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon , 2007, Science.

[53]  P. Silver,et al.  Intermittent Plate Tectonics? , 2006, Science.

[54]  O. Catuneanu,et al.  Precambrian continental freeboard and geological evolution: A time perspective , 2006 .

[55]  David C. Catling,et al.  The loss of mass‐independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane , 2006 .

[56]  G. Davies Mantle regulation of core cooling: A geodynamo without core radioactivity? , 2006 .

[57]  D. Evans Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite palaeolatitudes , 2006, Nature.

[58]  D. Long Architecture of pre-vegetation sandy-braided perennial and ephemeral river deposits in the Paleoproterozoic Athabasca Group, northern Saskatchewan, Canada as indicators of Precambrian fluvial style , 2006 .

[59]  Peter A. Cawood,et al.  Precambrian plate tectonics: Criteria and evidence , 2006 .

[60]  H. D. Holland,et al.  The oxygenation of the atmosphere and oceans , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[61]  A. Knoll,et al.  Eukaryotic organisms in Proterozoic oceans , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[62]  H. Volk,et al.  Biomarkers from Huronian oil-bearing fluid inclusions: An uncontaminated record of life before the Great Oxidation Event , 2006 .

[63]  R. Hazen,et al.  A new window into Early Archean life: Microbial mats in Earth's oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa) , 2006 .

[64]  C. Hawkesworth,et al.  Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution , 2006 .

[65]  C. Hawkesworth,et al.  Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon , 2006, Nature.

[66]  P. Betts,et al.  The 1800–1100 Ma tectonic evolution of Australia , 2006 .

[67]  C. Klein Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins , 2005 .

[68]  A. Bekker,et al.  Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen , 2005 .

[69]  E. Simpson,et al.  Neoarchaean (c. 2.58 Ga) halite casts: implications for palaeoceanic chemistry , 2005, Journal of the Geological Society.

[70]  D. Catling,et al.  How Earth's atmosphere evolved to an oxic state: A status report , 2005 .

[71]  Makoto Ito,et al.  Facies architecture and sequence-stratigraphic features of the Tumbiana Formation in the Pilbara Craton, northwestern Australia: Implications for depositional environments of oxygenic stromatolites during the Late Archean , 2005 .

[72]  R. Kopp,et al.  The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[73]  R. Stern Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time , 2005 .

[74]  A. J. Kaufman,et al.  Evidence for Paleoproterozoic cap carbonates in North America , 2005 .

[75]  L. P. Knauth,et al.  Temperature and salinity history of the Precambrian ocean: implications for the course of microbial evolution , 2005 .

[76]  W. Todt,et al.  Multistage magmatic and metamorphic evolution in the Southern Siberian Craton: Archean and Palaeoproterozoic zircon ages revealed by SHRIMP and TIMS , 2005 .

[77]  Rajat Mazumder,et al.  Tidal rhythmites and their implications , 2005 .

[78]  A. Bekker,et al.  Iron Isotope Constraints on the Archean and Paleoproterozoic Ocean Redox State , 2004, Science.

[79]  W. Peltier,et al.  Numerical models of the Earth's thermal history , 2004 .

[80]  Linda C. Kah,et al.  Low marine sulphate and protracted oxygenation of the Proterozoic biosphere , 2004, Nature.

[81]  A. Bekker,et al.  Primitive Os and 2316 Ma age for marine shale: implications for Paleoproterozoic glacial events and the rise of atmospheric oxygen , 2004 .

[82]  B. Windley,et al.  Major episodic increases of continental crustal growth determined from zircon ages of river sands; implications for mantle overturns in the Early Precambrian , 2004 .

[83]  K. Condie Supercontinents and superplume events: distinguishing signals in the geologic record , 2004 .

[84]  T. Komiya Material circulation model including chemical differentiation within the mantle and secular variation of temperature and composition of the mantle , 2004 .

[85]  D. Martin Depositional environment and taphonomy of the ‘strings of beads’: Mesoproterozoic multicellular fossils in the Bangemall Supergroup, Western Australia , 2004 .

[86]  F. Pirajno Hotspots and mantle plumes: global intraplate tectonics, magmatism and ore deposits , 2004 .

[87]  A. Anbar,et al.  Molybdenum Isotope Evidence for Widespread Anoxia in Mid-Proterozoic Oceans , 2004, Science.

[88]  G. Logan,et al.  Barite, BIFs and bugs: evidence for the evolution of the Earth’s early hydrosphere , 2004 .

[89]  A. Bekker,et al.  Dating the rise of atmospheric oxygen , 2004, Nature.

[90]  A. Prokoph,et al.  Time‐Series Analysis of Large Igneous Provinces: 3500 Ma to Present , 2004, The Journal of Geology.

[91]  W. Bleeker The late Archean record: a puzzle in ca. 35 pieces , 2003 .

[92]  Roger E. Summons,et al.  A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia , 2003 .

[93]  J. Meert,et al.  The making and unmaking of a supercontinent: Rodinia revisited , 2003 .

[94]  E. Tajika Faint young Sun and the carbon cycle: implication for the Proterozoic global glaciations , 2003 .

[95]  B. Daouda,et al.  The Guiana and the West African Shield Palaeoproterozoic grouping: new palaeomagnetic data for French Guiana and the Ivory Coast , 2003 .

[96]  J. Kasting,et al.  New insights into Archean sulfur cycle from mass-independent sulfur isotope records from the Hamersley Basin, Australia , 2003 .

[97]  Geoffrey D. Price,et al.  The influence of potassium on core and geodynamo evolution , 2003 .

[98]  David Bercovici,et al.  The generation of plate tectonics from mantle convection , 2003 .

[99]  F. Gauthier-Lafaye,et al.  Natural nuclear fission reactors: time constraints for occurrence, and their relation to uranium and manganese deposits and to the evolution of the atmosphere , 2003 .

[100]  D. Bercovici,et al.  Whole-mantle convection and the transition-zone water filter , 2002, Nature.

[101]  Heinrich D. Holland,et al.  Volcanic gases, black smokers, and the great oxidation event , 2002 .

[102]  Peter A. Cawood,et al.  Review of global 2.1-1.8 Ga orogens: implications for a pre-Rodinia supercontinent , 2002 .

[103]  A. Knoll,et al.  Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? , 2002, Science.

[104]  W. F. Cannon,et al.  Age of volcanic rocks and syndepositional iron formations, Marquette Range Supergroup: implications for the tectonic setting of Paleoproterozoic iron formations of the Lake Superior region , 2002 .

[105]  D. Schrag,et al.  The snowball Earth hypothesis: testing the limits of global change , 2002 .

[106]  G. Shields,et al.  Precambrian marine carbonate isotope database: Version 1.1 , 2002 .

[107]  H. Gonnermann,et al.  Dynamics and longevity of an initially stratified mantle , 2002 .

[108]  S. Bengtson,et al.  Discoidal Impressions and Trace-Like Fossils More Than 1200 Million Years Old , 2002, Science.

[109]  Donald E. Canfield,et al.  Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides , 2002, Nature.

[110]  K. McCaffrey,et al.  Mid-crustal partitioning and attachment during oblique convergence in an arc system, Palaeoproterozoic Ketilidian orogen, southern Greenland , 2002, Journal of the Geological Society.

[111]  Peter E. van Keken,et al.  MANTLE MIXING: The Generation, Preservation, and Destruction of Chemical Heterogeneity , 2002 .

[112]  A. Steele,et al.  Questioning the evidence for Earth's oldest fossils , 2002, Nature.

[113]  M. Brasier,et al.  Did global tectonics drive early biosphere evolution? Carbon isotope record from 2.6 to 1.9 Ga carbonates of Western Australian basins , 2002 .

[114]  I. Fletcher,et al.  1.6 Ga U-Pb zircon age for the Chorhat Sandstone, lower Vindhyan, India: Possible implications for early evolution of animals , 2002 .

[115]  A. Knoll,et al.  Middle Proterozoic ocean chemistry: Evidence from the McArthur Basin, northern Australia , 2002 .

[116]  Jean-Paul Poirier,et al.  The age of the inner core , 2001 .

[117]  K. Zahnle,et al.  Biogenic Methane, Hydrogen Escape, and the Irreversible Oxidation of Early Earth , 2001, Science.

[118]  A. J. Kaufman,et al.  Chemostratigraphy of the Paleoproterozoic Duitschland Formation, South Africa: Implications for Coupled Climate Change and Carbon Cycling , 2001 .

[119]  J. Banfield,et al.  Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. , 2000, Science.

[120]  M. Thiemens,et al.  Atmospheric influence of Earth's earliest sulfur cycle , 2000, Science.

[121]  P. Tackley,et al.  Mantle convection and plate tectonics: toward an integrated physical and chemical theory , 2000, Science.

[122]  N. Butterfield,et al.  Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes , 2000, Paleobiology.

[123]  George E. Williams,et al.  Geological constraints on the Precambrian history of Earth's rotation and the Moon's orbit , 2000 .

[124]  R. Romer,et al.  Pb, O, and C isotopes in silicified Mooidraai dolomite (Transvaal Supergroup, South Africa): implications for the composition of Paleoproterozoic seawater and `dating' the increase of oxygen in the Precambrian atmosphere , 1999 .

[125]  P. Medvedev,et al.  Extreme 13Ccarb enrichment in ca. 2.0 Ga magnesite–stromatolite–dolomite–`red beds' association in a global context: a case for the world-wide signal enhanced by a local environment , 1999 .

[126]  R Buick,et al.  Archean molecular fossils and the early rise of eukaryotes. , 1999, Science.

[127]  S. Kelley,et al.  Mantle plumes and Antarctica-New Zealand rifting: evidence from mid-Cretaceous mafic dykes , 1999, Journal of the Geological Society.

[128]  G. Jarvis,et al.  Effects of mantle heat source distribution on supercontinent stability , 1999 .

[129]  Collerson,et al.  Evolution of the continents and the atmosphere inferred from Th-U-Nb systematics of the depleted mantle , 1999, Science.

[130]  M. Wingate A palaeomagnetic test of the Kaapvaal - Pilbara (Vaalbara) connection at 2.78 Ga , 1998 .

[131]  K. Condie EPISODIC CONTINENTAL GROWTH AND SUPERCONTINENTS : A MANTLE AVALANCHE CONNECTION? , 1998 .

[132]  Pfluger,et al.  Triploblastic animals more than 1 billion years ago: trace fossil evidence from india , 1998, Science.

[133]  E. Simpson,et al.  Controls on spatial and temporal distribution of Precambrian eolianites , 1998 .

[134]  D. Groves,et al.  The Late Archaean bonanza: metallogenic and environmental consequences of the interaction between mantle plumes, lithospheric tectonics and global cyclicity , 1998 .

[135]  E. R. Engdahl,et al.  Evidence for deep mantle circulation from global tomography , 1997, Nature.

[136]  L. Heaman Global mafic magmatism at 2.45 Ga: Remnants of an ancient large igneous province? , 1997 .

[137]  Greg Hirth,et al.  Water in the oceanic upper mantle: implications for rheology , 1996 .

[138]  J. Karhu,et al.  Carbon isotopes and the rise of atmospheric oxygen , 1996 .

[139]  E. S. Cheney Sequence stratigraphy and plate tectonic significance of the Transvaal succession of southern Africa and its equivalent in Western Australia , 1996 .

[140]  John J.W. Rogers,et al.  A History of Continents in the past Three Billion Years , 1996, The Journal of Geology.

[141]  R. Rudnick Making continental crust , 1995, Nature.

[142]  K. Condie Episodic ages of Greenstones: A key to mantle dynamics? , 1995 .

[143]  G. Davies Penetration of plates and plumes through the mantle transition zone , 1995 .

[144]  P. Ledru,et al.  Markers of the last stages of the Palaeoproterozoic collision: evidence for a 2 Ga continent involving circum-South Atlantic provinces , 1994 .

[145]  Walter H. F. Smith,et al.  An empirical thermal history of the Earth's upper mantle , 1994 .

[146]  G. Davies Cooling the core and mantle by plume and plate flows , 1993 .

[147]  J. Kasting,et al.  New Constraints on Precambrian Ocean Composition , 1993, The Journal of Geology.

[148]  J. Kasting,et al.  Mantle Redox Evolution and the Oxidation State of the Archean Atmosphere , 1993, The Journal of Geology.

[149]  Joseph L. Kirschvink,et al.  Late Proterozoic low-latitude global glaciation: the snowball Earth , 1992 .

[150]  B. Runnegar,et al.  Megascopic eukaryotic algae from the 2.1-billion-year-old negaunee iron-formation, Michigan. , 1992, Science.

[151]  D. Groves,et al.  Supercontinent cycles and the distribution of metal deposits through time , 1992 .

[152]  R. Buick The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient Archaean lakes. , 1992, Science.

[153]  R. Armstrong The persistent myth of crustal growth , 1991 .

[154]  K. A. Plumb,et al.  New Precambrian time scale , 1991 .

[155]  J. Monger,et al.  Anatomy of North America: thematic geologic portrayals of the continent , 1991 .

[156]  G. Davies,et al.  Ocean bathymetry and mantle convection: 1. Large‐scale flow and hotspots , 1988 .

[157]  Michael Gurnis,et al.  Large-scale mantle convection and the aggregation and dispersal of supercontinents , 1988, Nature.

[158]  H. Marshall,et al.  Long-term climate change and the geochemical cycle of carbon. , 1988, Journal of Geophysical Research.

[159]  C. Hale Palaeomagnetic data suggest link between the Archaean–Proterozoic boundary and inner-core nucleation , 1987, Nature.

[160]  R. Nance,et al.  Post-Archean biogeochemical cycles and long-term episodicity in tectonic processes , 1986 .

[161]  F. Richter Models for the Archean thermal regime , 1985 .

[162]  T. Worsley,et al.  Global tectonics and eustasy for the past 2 billion years , 1984 .

[163]  W. Krumbein,et al.  Possible microbial pathways in the formation of Precambrian ore deposits , 1984, Journal of the Geological Society.

[164]  G. Schubert,et al.  Phanerozoic addition rates to the continental crust and crustal growth , 1984 .

[165]  E. R. Oxburgh,et al.  Heat and helium in the Earth , 1983, Nature.

[166]  G. Schubert,et al.  Magnetism and thermal evolution of the terrestrial planets , 1983 .

[167]  M. Kurz,et al.  Constraints on evolution of Earth's mantle from rare gas systematics , 1983, Nature.

[168]  J. Dewey,et al.  Growth and differentiation of the continental crust , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[169]  R. Armstrong,et al.  Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental-growth Earth , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[170]  S. Jacobsen,et al.  The Mean Age of Mantle and Crustal Reservoirs for the Planet Mars , 1979 .

[171]  H. Hofmann Precambrian microflora, Belcher Islands, Canada; significance and systematics , 1976 .

[172]  C. Sagan,et al.  Earth and Mars: Evolution of Atmospheres and Surface Temperatures , 1972, Science.

[173]  P. Hurley,et al.  Pre-drift continental nuclei. , 1969, Science.

[174]  P. Cloud Atmospheric and hydrospheric evolution on the primitive earth. Both secular accretion and biological and geochemical processes have affected earth's volatile envelope. , 1968, Science.

[175]  S. Taylor,et al.  Abundance of chemical elements in the continental crust: A new table: Geochimica e t Cosmochimica Ac , 1964 .

[176]  E. Barghoorn,et al.  Occurrence of Structurally Preserved Plants in Pre-Cambrian Rocks of the Canadian Shield. , 1954, Science.

[177]  J. A. Jacobs,et al.  The Earth's Inner Core , 1953, Nature.

[178]  D. Evans The palaeomagnetically viable, long-lived and all-inclusive Rodinia supercontinent reconstruction , 2009 .

[179]  J. Gutzmer,et al.  Origin and Paleoenvironmental Significance of Major Iron Formations at the Archean-Paleoproterozoic Boundary , 2008 .

[180]  K. Condie,et al.  When Did Plate Tectonics Begin on Planet Earth , 2008 .

[181]  H. Strauss,et al.  Emergence of an aerobic biosphere during the Archean-Proterozoic transition: Challenges of future research , 2005 .

[182]  Jeannot Trampert,et al.  Towards a quantitative interpretation of global seismic tomography , 2005 .

[183]  Michael A. Arthur,et al.  Methane-rich Proterozoic atmosphere? , 2003 .

[184]  M. Santosh,et al.  Configuration of Columbia, a Mesoproterozoic Supercontinent , 2002 .

[185]  D. Porcelli,et al.  Models for Distribution of Terrestrial Noble Gases and Evolution of the Atmosphere , 2002 .

[186]  J. Meert Paleomagnetic Evidence for a Paleo-Mesoproterozoic Supercontinent Columbia , 2002 .

[187]  Donald L. Turcotte,et al.  Mantle Convection in the Earth and Planets: Contents , 2001 .

[188]  R. Ernst,et al.  Large mafic magmatic events through time and links to mantle-plume heads , 2001 .

[189]  A. Şengör,et al.  Rifts of the world , 2001 .

[190]  J. Grotzinger,et al.  Precambrian Carbonates: Evolution of Understanding , 2000 .

[191]  K. H. Poulsen,et al.  Geology and mineral deposits of the Superior Province of the Canadian Shield , 1998 .

[192]  P. Hoffman,et al.  United Plates of America, The Birth of a Craton: Early Proterozoic Assembly and Growth of Laurentia , 1988 .

[193]  G. Gross Tectonic Systems and the Deposition of Iron-Formation , 1983 .

[194]  R. Hargraves,et al.  Proterozoic transcurrent tectonics: palaeomagnetic evidence from Venezuela and Africa , 1981, Nature.

[195]  D. Wise Continental Margins, Freeboard and the Volumes of Continents and Oceans Through Time , 1974 .

[196]  R. G. Gastil The distribution of mineral dates in time and space , 1960 .