Vortex stability in nearly-two-dimensional Bose-Einstein condensates with attraction

We perform accurate investigation of stability of localized vortices in an effectively two-dimensional ('pancake-shaped') trapped Bose-Einstein condensate with negative scattering length. The analysis combines computation of the stability eigenvalues and direct simulations. The states with vorticity S=1 are stable in a third of their existence region, 0 0.43N{sub max}{sup (S=1)}, the fragments do not recombine, as each one collapses by itself. The results are compared with those in the full three-dimensional (3D) Gross-Pitaevskii equation. In a moderately anisotropic 3D configuration, with the aspect ratio {radical}(10), the stability interval of the S=1 vortices occupies {approx_equal}40% of their existence region, hence the two-dimensional (2D) limit provides for a reasonable approximation in this case. For the isotropic 3D configuration, the stability interval expands to 65% of the existence domain. Overall, the vorticity heightens the actual collapse threshold by a factor of up to 2. All vortices with S{>=}2 are unstable.

[1]  Boris A. Malomed,et al.  Stability of vortex solitons in the cubic-quintic model , 2002 .

[2]  Hiroki Saito,et al.  Dynamically stabilized bright solitons in a two-dimensional bose-einstein condensate. , 2003, Physical review letters.

[3]  Robert L. Pego,et al.  Spectrally Stable Encapsulated Vortices for Nonlinear Schrödinger Equations , 2001, J. Nonlinear Sci..

[4]  Malomed,et al.  Vibration modes of a gap soliton in a nonlinear optical medium. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  Mette Owner-Petersen,et al.  Multiconjugate adaptive optics for large telescopes: analytical control of the mirror shapes. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[6]  B. Malomed,et al.  Spatiotemporal optical solitons , 2005 .

[7]  Boris A. Malomed,et al.  Stable (2+1)-dimensional solitons in a layered medium with sign-alternating Kerr nonlinearity , 2002 .

[8]  Humberto Michinel,et al.  Stable azimuthal stationary state in quintic nonlinear optical media , 1997 .

[9]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[10]  C. Pethick,et al.  Bose–Einstein Condensation in Dilute Gases: Contents , 2008 .

[11]  Luc Bergé,et al.  Ground states and vortices of matter-wave condensates and optical guided waves. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  J. C. van der Meer,et al.  Hamiltonian Hopf bifurcation with symmetry , 1990 .

[13]  Luc Bergé,et al.  Wave collapse in physics: principles and applications to light and plasma waves , 1998 .

[14]  Randall G. Hulet,et al.  Formation and propagation of matter-wave soliton trains , 2002, Nature.

[15]  B. Malomed,et al.  Stable spatiotemporal solitons in bessel optical lattices. , 2005, Physical review letters.

[16]  Elliott H. Lieb,et al.  A Rigorous Derivation¶of the Gross–Pitaevskii Energy Functional¶for a Two-dimensional Bose Gas , 2000 .

[17]  Yuri Kivshar,et al.  Stable vortex solitons in nonlocal self-focusing nonlinear media. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Stefano Trillo,et al.  Stability, Multistability, and Wobbling of Optical Gap Solitons , 1998 .

[19]  A. I. Yakimenko,et al.  Stable multicharged localized optical vortices in cubic–quintic nonlinear media , 2004 .

[20]  B. Malomed,et al.  Stable vortex solitons supported by competing quadratic and cubic nonlinearities. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  T. Gustavson,et al.  Realization of Bose-Einstein condensates in lower dimensions. , 2001, Physical review letters.

[22]  Víctor M. Pérez-García,et al.  Stable vortex dipoles in nonrotating Bose-Einstein condensates , 2003 .

[23]  Gang-Ding Peng,et al.  Stable helical solitons in optical media , 2001 .

[24]  Holzmann,et al.  Bose-einstein condensation in quasi-2D trapped gases , 2000, Physical review letters.

[25]  M. M. Salomaa,et al.  Stationary vortex clusters in nonrotating Bose-Einstein condensates , 2005 .

[26]  L. Torner,et al.  Globally linked vortex clusters in trapped wave fields. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Bradley,et al.  Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions. , 1995, Physical review letters.

[28]  B. A. Malomed,et al.  Controlling collapse in Bose-Einstein condensates by temporal modulation of the scattering length , 2003 .

[29]  Lluis Torner,et al.  Stable ring-profile vortex solitons in bessel optical lattices. , 2005, Physical review letters.

[30]  Ole Bang,et al.  Ring vortex solitons in nonlocal nonlinear media , 2005 .

[31]  F. Dalfovo,et al.  Bosons in anisotropic traps: Ground state and vortices. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[32]  L. Salasnich,et al.  Effective wave equations for the dynamics of cigar-shaped and disk-shaped Bose condensates , 2002 .

[33]  Humberto Michinel,et al.  Square vortex solitons with a large angular momentum. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  A. Snyder,et al.  Stable black self-guided beams of circular symmetry in a bulk Kerr medium. , 1992, Optics letters.

[35]  A. Maradudin,et al.  Stability of stationary gap solitary waves at periodically modulated surfaces. , 1999 .

[36]  C. Salomon,et al.  Formation of a Matter-Wave Bright Soliton , 2002, Science.

[37]  Humberto Michinel,et al.  Stabilized vortices in layered Kerr media. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  B. Malomed,et al.  Three-dimensional spinning solitons in the cubic-quintic nonlinear medium. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[39]  Boris A. Malomed,et al.  Stability of spinning ring solitons of the cubic–quintic nonlinear Schrödinger equation , 2001, nlin/0109013.

[40]  E. Cornell,et al.  Vortex Lattice Dynamics in a Dilute Gas BEC , 2004 .

[41]  Humberto Michinel,et al.  Stabilized two-dimensional vector solitons. , 2004, Physical review letters.

[42]  E. V. Zemlyanaya,et al.  Vibrations and Oscillatory Instabilities of Gap Solitons , 1998 .

[43]  Lene Vestergaard Hau,et al.  Observation of hybrid soliton vortex-ring structures in Bose-Einstein condensates. , 2005, Physical review letters.

[44]  R. J. Dodd,et al.  Approximate Solutions of the Nonlinear Schrödinger Equation for Ground and Excited States of Bose-Einstein Condensates , 1996, Journal of research of the National Institute of Standards and Technology.

[45]  P C Haljan,et al.  Watching dark solitons decay into vortex rings in a Bose-Einstein condensate. , 2001, Physical review letters.

[46]  B. Malomed,et al.  Feshbach resonance management for Bose-Einstein condensates. , 2003, Physical review letters.

[47]  C. E. Wieman,et al.  Vortices in a Bose Einstein condensate , 1999, QELS 2000.

[48]  B. A. Malomed,et al.  Multidimensional solitons in periodic potentials , 2003 .

[49]  R. A. Vlasov,et al.  Auto-waveguide propagation and the collapse of spiral light beams in non-linear media , 1988 .

[50]  Anatoly Svidzinsky,et al.  Vortices in a trapped dilute Bose-Einstein condensate , 2001, cond-mat/0102003.

[51]  Dumitru Mihalache,et al.  STABILITY OF WALKING VECTOR SOLITONS , 1998 .

[52]  Hidetsugu Sakaguchi,et al.  Two-dimensional loosely and tightly bound solitons in optical lattices and inverted traps , 2004 .

[53]  Ionut Danaila,et al.  Three-dimensional parallel vortex rings in Bose-Einstein condensates , 2004 .

[54]  Vasily M. Volkov,et al.  The Theory of Spiral Laser Beams in Nonlinear Media , 1992 .

[55]  J P Torres,et al.  Stable spinning optical solitons in three dimensions. , 2002, Physical review letters.

[56]  B. Malomed,et al.  Stable three-dimensional spinning optical solitons supported by competing quadratic and cubic nonlinearities. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  Jianke Yang,et al.  Fundamental and vortex solitons in a two-dimensional optical lattice. , 2003, Optics letters.

[58]  Dmitry V. Skryabin,et al.  Optical Solitons Carrying Orbital Angular Momentum , 1997 .

[59]  B. Malomed,et al.  Stable localized vortex solitons. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  N. Akhmediev,et al.  Stability analysis of even and odd waves of symmetric nonlinear planar optical waveguides , 1993 .

[61]  Lluis Torner,et al.  Azimuthal instabilities and self-breaking of beams into sets of solitons in bulk second-harmonic generation , 1997 .

[62]  D. Pritchard,et al.  Imprinting vortices in a Bose-Einstein condensate using topological phases. , 2002, Physical review letters.

[63]  Boris A. Malomed,et al.  Spinning solitons in cubic-quintic nonlinear media , 2001 .

[64]  L. Torner,et al.  Stable three-dimensional spatiotemporal solitons in a two-dimensional photonic lattice. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[65]  Law,et al.  Optical vortex solitons observed in Kerr nonlinear media. , 1992, Physical review letters.

[66]  Y. Kivshar,et al.  Matter-wave gap vortices in optical lattices , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[67]  B. A. Malomed,et al.  Multidimensional solitons in a low-dimensional periodic potential (9 pages) , 2004 .

[68]  D. Mihalache,et al.  Linear stability analysis of walking vector solitons. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[69]  Víctor M. Pérez-García,et al.  Stabilization of solitons of the multidimensional nonlinear Schrodinger equation: Matter-wave breathers , 2003, nlin/0305030.