Graphs of Prescribed Girth and Bi-Degree
暂无分享,去创建一个
Zoltán Füredi | Felix Lazebnik | Ákos Seress | Vasiliy A. Ustimenko | Andrew J. Woldar | F. Lazebnik | A. Woldar | Z. Füredi | Á. Seress | V. Ustimenko
[1] V. A. Ustimenko,et al. A linear interpretation of the flag geometries of Chevalley groups , 1990 .
[2] Felix Lazebnik,et al. Explicit Construction of Graphs with an Arbitrary Large Girth and of Large Size , 1995, Discret. Appl. Math..
[3] Miklós Simonovits,et al. On a class of degenerate extremal graph problems , 1983, Comb..
[4] Chung-Piaw Teo,et al. The number of shortest cycles and the chromatic uniqueness of a graph , 1992, J. Graph Theory.
[5] D. R. Heath-Brown. Zero-free regions for Dirichlet $L$-functions, and the least prime in an arithmetic progression , 1992 .
[6] M. Simonovits,et al. Cycles of even length in graphs , 1974 .
[7] H. Sachs,et al. Regukre Graphen gegebener Taillenweite mit minimaler Knotenzahl , 1963 .
[8] Andries E. Brouwer,et al. Strongly regular graphs and partial geometries , 1984 .
[9] F. Lazebnik,et al. A new series of dense graphs of high girth , 1995, math/9501231.
[10] H. Sachs. Regular Graphs with Given Girth and Restricted Circuits , 1963 .
[11] Felix Lazebnik,et al. New Constructions of Bipartite Graphs on m, n Vertices with Many Edges and Without Small Cycles , 1994, J. Comb. Theory, Ser. B.
[12] Wang Wei. On the least prime in an arithmetic progression , 1991 .