초기 오차에 강인한 반복 학습제어 알고리즘에 관한 연구

본 논문에서는 CITE를 포함한 2차 반복 학습제어 방법이 수렴 성능의 향상과 외란에 대한 강인성 향상에 덧붙여 초기 오차가 있음에도 불구하고 이를 극복할 뿐만 아니라 기존의 알고리즘보다 더 빠른 수렴 능력이 있음을 확인한다. 또한 불안정한 결과를 낳는 높은 학습 게인의 경우에도 CITE를 추가한 본 학습제어 방법에 의해 안정화됨으로써, 빠른 수렴 특성과 강인성 향상을 가져올 수 있음을 보인다. 그리고 본 알고리즘을 선형 시변 시스템에 대해 적용한 시뮬레이션 결과를 통해 초기 오차의 극복 능력이 뛰어남을 확인하고, 아울러 각 학습 게인들이 수렴 속도와 안정성에 미치는 영향을 상세히 분석한다.