Random Walks and Heat Kernels on Graphs

This introduction to random walks on infinite graphs gives particular emphasis to graphs with polynomial volume growth. It offers an overview of analytic methods, starting with the connection between random walks and electrical resistance, and then proceeding to study the use of isoperimetric and Poincare inequalities. The book presents rough isometries and looks at the properties of a graph that are stable under these transformations. Applications include the 'type problem': determining whether a graph is transient or recurrent. The final chapters show how geometric properties of the graph can be used to establish heat kernel bounds, that is, bounds on the transition probabilities of the random walk, and it is proved that Gaussian bounds hold for graphs that are roughly isometric to Euclidean space. Aimed at graduate students in mathematics, the book is also useful for researchers as a reference for results that are hard to find elsewhere.

[1]  D. Jerison The Poincaré inequality for vector fields satisfying Hörmander’s condition , 1986 .

[2]  Moritz Kassmann,et al.  On weighted Poincaré inequalities , 2012 .

[3]  Rigorous exponent inequalities for random walks , 1990 .

[4]  D. Stroock,et al.  A new proof of Moser's parabolic harnack inequality using the old ideas of Nash , 1986 .

[5]  T. Kumagai Random walks on disordered media and their scaling limits , 2014 .

[6]  Terry Lyons Instability of the Liouville property for quasi-isometric Riemannian manifolds and reversible Markov chains , 1987 .

[7]  M. Folz Gaussian Upper Bounds for Heat Kernels of Continuous Time Simple Random Walks , 2011, 1102.2265.

[8]  W. Ziemer Weakly differentiable functions , 1989 .

[9]  P. Tetali Random walks and the effective resistance of networks , 1991 .

[10]  Martin T. Barlow,et al.  Random Walk on the Incipient Infinite Cluster for Oriented Percolation in High Dimensions , 2006, math/0608164.

[11]  A. Telcs LocalSub-Gaussian Estimates on Graphs: The Strongly Recurrent Case , 2001 .

[12]  L. Ahlfors Conformal Invariants: Topics in Geometric Function Theory , 1973 .

[13]  O. Rothaus Analytic inequalities, isoperimetric inequalities and logarithmic Sobolev inequalities , 1985 .

[14]  Adam S. Sikora,et al.  Gaussian heat kernel upper bounds via the Phragmén–Lindelöf theorem , 2006, math/0609429.

[15]  András Telcs,et al.  Random Walks on graphs, electric networks and fractals , 1989 .

[16]  A. Telcs,et al.  Diffusive Limits on the Penrose Tiling , 2009, 0910.4296.

[17]  T. Coulhon,et al.  Random Walks on Graphs with Regular Volume Growth , 1998 .

[18]  Paolo M. Soardi,et al.  Potential Theory on Infinite Networks , 1994 .

[19]  R. Bass,et al.  Stability of parabolic Harnack inequalities , 2003 .

[20]  G. Kirchhoff Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird , 1847 .

[21]  M. Barlow,et al.  Characterization of sub‐Gaussian heat kernel estimates on strongly recurrent graphs , 2005 .

[22]  Jun Kigami Harmonic Calculus on Limits of Networks and Its Application to Dendrites , 1995 .

[23]  M. Barlow,et al.  Parabolic Harnack Inequality and Local Limit Theorem for Percolation Clusters , 2008, 0810.2467.

[24]  L. Rogers,et al.  Diffusions, Markov Processes and Martingales - Vol 1: Foundations , 1979 .

[25]  R. Durrett Probability: Theory and Examples , 1993 .

[26]  M. Barlow Which values of the volume growth and escape time exponent are possible for a graph , 2004 .

[27]  Some Remarks on the Elliptic Harnack Inequality , 2003, math/0309052.

[28]  A. Telcs,et al.  Quenched Invariance Principle for the Random Walk on the Penrose Tiling , 2013, 1311.7023.

[29]  A. Telcs,et al.  Harnack inequalities and sub-Gaussian estimates for random walks , 2002 .

[30]  David Revelle,et al.  Heat Kernel Asymptotics on the Lamplighter Group , 2003 .

[31]  Laurent Saloff-Coste,et al.  GAUSSIAN ESTIMATES FOR MARKOV CHAINS AND RANDOM WALKS ON GROUPS , 1993 .

[32]  J. Laurie Snell,et al.  Random Walks and Electrical Networks , 1984 .

[33]  M. Barlow,et al.  Spectral Dimension and Random Walks on the Two Dimensional Uniform Spanning Tree , 2009, 0912.4765.

[34]  T. K. Carne,et al.  A transmutation formula for Markov chains , 1985 .

[35]  J. Moser A Harnack inequality for parabolic di2erential equations , 1964 .

[36]  E. Davies Large Deviations for Heat Kernels on Graphs , 1993 .

[37]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[38]  Mark Jerrum,et al.  Approximate Counting, Uniform Generation and Rapidly Mixing Markov Chains , 1987, International Workshop on Graph-Theoretic Concepts in Computer Science.

[39]  D. Stroock Markov chain approximations to symmetric diffusions , 1997 .

[40]  Martin T. Barlow,et al.  Random walk on the incipient infinite cluster on trees , 2005 .

[41]  M. Fukushima,et al.  Dirichlet forms and symmetric Markov processes , 1994 .

[42]  Y. Peres,et al.  Probability on Trees and Networks , 2017 .

[43]  G. Kirchhoff On the Solution of the Equations Obtained from the Investigation of the Linear Distribution of Galvanic Currents , 1958 .

[44]  W. Woess Random walks on infinite graphs and groups, by Wolfgang Woess, Cambridge Tracts , 2001 .

[45]  Graphs Between the Elliptic and Parabolic Harnack Inequalities , 2002 .

[46]  Isoperimetric constants and estimates of heat kernels of pre Sierpinski carpets , 1990 .

[47]  Laurent Saloff-Coste,et al.  Aspects of Sobolev-type inequalities , 2001 .

[48]  Angelika Mueller,et al.  Principles Of Random Walk , 2016 .

[49]  A. Grigor’yan,et al.  Sub-Gaussian estimates of heat kernels on infinite graphs, to appera in Duke Math , 2001 .

[50]  Asaf Nachmias,et al.  The Alexander-Orbach conjecture holds in high dimensions , 2008, 0806.1442.

[51]  M. Folz Volume growth and stochastic completeness of graphs , 2012, 1201.5908.

[52]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[53]  S. Gersten Essays in Group Theory , 2011 .

[54]  A. Grigor’yan,et al.  The discrete integral maximum principle and its applications , 2005 .

[55]  P. Diaconis,et al.  Geometric Bounds for Eigenvalues of Markov Chains , 1991 .

[56]  P. Buser A note on the isoperimetric constant , 1982 .

[57]  D. Aronson,et al.  Bounds for the fundamental solution of a parabolic equation , 1967 .

[58]  Thierry Coulhon Espaces de Lipschitz et inégalités de Poincaré , 1996 .

[59]  David Williams,et al.  Probability with Martingales , 1991, Cambridge mathematical textbooks.

[60]  Alexander Grigor'yan,et al.  Heat kernel upper bounds on a complete non-compact manifold. , 1994 .

[61]  F. G. Foster On the Stochastic Matrices Associated with Certain Queuing Processes , 1953 .

[62]  Jean-François Mertens,et al.  Necessary and sufficient conditions for recurrence and transience of Markov chains, in terms of inequalities , 1978 .

[63]  Peter G. Doyle,et al.  Random Walks and Electric Networks: REFERENCES , 1987 .

[64]  M. Barlow,et al.  Gaussian bounds and parabolic Harnack inequality on locally irregular graphs , 2016 .

[65]  A. Grigor’yan,et al.  On stochastic completeness of jump processes , 2012 .

[66]  Robin Pemantle,et al.  Unpredictable paths and percolation , 1998 .

[67]  A. Grigor’yan THE HEAT EQUATION ON NONCOMPACT RIEMANNIAN MANIFOLDS , 1992 .

[68]  Motoko Kotani,et al.  Discrete Geometric Analysis , 2004 .

[69]  D. Stroock,et al.  Upper bounds for symmetric Markov transition functions , 1986 .

[70]  J. Kemeny,et al.  Denumerable Markov chains , 1969 .

[71]  J. Deny,et al.  Espaces de dirichlet , 1958 .

[72]  Thierry Delmotte,et al.  Parabolic Harnack inequality and estimates of Markov chains on graphs , 1999 .

[73]  V. V. Buldygin,et al.  Brunn-Minkowski inequality , 2000 .

[74]  Rayleigh The Problem of the Random Walk , 1905, Nature.

[75]  Elizabeth L. Wilmer,et al.  Markov Chains and Mixing Times , 2008 .

[76]  Gregory F. Lawler,et al.  Random Walk: A Modern Introduction , 2010 .

[77]  N. Varopoulos,et al.  Isoperimetric inequalities and Markov chains , 1985 .

[78]  M. Gromov Groups of polynomial growth and expanding maps , 1981 .

[79]  Masahiko Kanai,et al.  Rough isometries, and combinatorial approximations of geometries of non ∙ compact riemannian manifolds , 1985 .

[80]  Terry Lyons A Simple Criterion for Transience of a Reversible Markov Chain , 1983 .

[81]  P. Soardi,et al.  Proceedings of the American Mathematical Society Rough Isometries and Dirichlet Finite Harmonic Functions on Graphs , 2022 .

[82]  J. Cheeger A lower bound for the smallest eigenvalue of the Laplacian , 1969 .

[83]  J. Moser On a pointwise estimate for parabolic differential equations , 1971 .

[84]  J. Nash Continuity of Solutions of Parabolic and Elliptic Equations , 1958 .

[85]  L. Saloff-Coste,et al.  A note on Poincaré, Sobolev, and Harnack inequalities , 1992 .

[86]  Klaus Truemper,et al.  On the delta-wye reduction for planar graphs , 1989, J. Graph Theory.

[87]  Boris Hanin,et al.  Which Neural Net Architectures Give Rise To Exploding and Vanishing Gradients? , 2018, NeurIPS.

[88]  R. J. Duffin,et al.  The extremal length of a network , 1962 .