Random Walks and Heat Kernels on Graphs
暂无分享,去创建一个
[1] D. Jerison. The Poincaré inequality for vector fields satisfying Hörmander’s condition , 1986 .
[2] Moritz Kassmann,et al. On weighted Poincaré inequalities , 2012 .
[3] Rigorous exponent inequalities for random walks , 1990 .
[4] D. Stroock,et al. A new proof of Moser's parabolic harnack inequality using the old ideas of Nash , 1986 .
[5] T. Kumagai. Random walks on disordered media and their scaling limits , 2014 .
[6] Terry Lyons. Instability of the Liouville property for quasi-isometric Riemannian manifolds and reversible Markov chains , 1987 .
[7] M. Folz. Gaussian Upper Bounds for Heat Kernels of Continuous Time Simple Random Walks , 2011, 1102.2265.
[8] W. Ziemer. Weakly differentiable functions , 1989 .
[9] P. Tetali. Random walks and the effective resistance of networks , 1991 .
[10] Martin T. Barlow,et al. Random Walk on the Incipient Infinite Cluster for Oriented Percolation in High Dimensions , 2006, math/0608164.
[11] A. Telcs. LocalSub-Gaussian Estimates on Graphs: The Strongly Recurrent Case , 2001 .
[12] L. Ahlfors. Conformal Invariants: Topics in Geometric Function Theory , 1973 .
[13] O. Rothaus. Analytic inequalities, isoperimetric inequalities and logarithmic Sobolev inequalities , 1985 .
[14] Adam S. Sikora,et al. Gaussian heat kernel upper bounds via the Phragmén–Lindelöf theorem , 2006, math/0609429.
[15] András Telcs,et al. Random Walks on graphs, electric networks and fractals , 1989 .
[16] A. Telcs,et al. Diffusive Limits on the Penrose Tiling , 2009, 0910.4296.
[17] T. Coulhon,et al. Random Walks on Graphs with Regular Volume Growth , 1998 .
[18] Paolo M. Soardi,et al. Potential Theory on Infinite Networks , 1994 .
[19] R. Bass,et al. Stability of parabolic Harnack inequalities , 2003 .
[20] G. Kirchhoff. Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird , 1847 .
[21] M. Barlow,et al. Characterization of sub‐Gaussian heat kernel estimates on strongly recurrent graphs , 2005 .
[22] Jun Kigami. Harmonic Calculus on Limits of Networks and Its Application to Dendrites , 1995 .
[23] M. Barlow,et al. Parabolic Harnack Inequality and Local Limit Theorem for Percolation Clusters , 2008, 0810.2467.
[24] L. Rogers,et al. Diffusions, Markov Processes and Martingales - Vol 1: Foundations , 1979 .
[25] R. Durrett. Probability: Theory and Examples , 1993 .
[26] M. Barlow. Which values of the volume growth and escape time exponent are possible for a graph , 2004 .
[27] Some Remarks on the Elliptic Harnack Inequality , 2003, math/0309052.
[28] A. Telcs,et al. Quenched Invariance Principle for the Random Walk on the Penrose Tiling , 2013, 1311.7023.
[29] A. Telcs,et al. Harnack inequalities and sub-Gaussian estimates for random walks , 2002 .
[30] David Revelle,et al. Heat Kernel Asymptotics on the Lamplighter Group , 2003 .
[31] Laurent Saloff-Coste,et al. GAUSSIAN ESTIMATES FOR MARKOV CHAINS AND RANDOM WALKS ON GROUPS , 1993 .
[32] J. Laurie Snell,et al. Random Walks and Electrical Networks , 1984 .
[33] M. Barlow,et al. Spectral Dimension and Random Walks on the Two Dimensional Uniform Spanning Tree , 2009, 0912.4765.
[34] T. K. Carne,et al. A transmutation formula for Markov chains , 1985 .
[35] J. Moser. A Harnack inequality for parabolic di2erential equations , 1964 .
[36] E. Davies. Large Deviations for Heat Kernels on Graphs , 1993 .
[37] Fan Chung,et al. Spectral Graph Theory , 1996 .
[38] Mark Jerrum,et al. Approximate Counting, Uniform Generation and Rapidly Mixing Markov Chains , 1987, International Workshop on Graph-Theoretic Concepts in Computer Science.
[39] D. Stroock. Markov chain approximations to symmetric diffusions , 1997 .
[40] Martin T. Barlow,et al. Random walk on the incipient infinite cluster on trees , 2005 .
[41] M. Fukushima,et al. Dirichlet forms and symmetric Markov processes , 1994 .
[42] Y. Peres,et al. Probability on Trees and Networks , 2017 .
[43] G. Kirchhoff. On the Solution of the Equations Obtained from the Investigation of the Linear Distribution of Galvanic Currents , 1958 .
[44] W. Woess. Random walks on infinite graphs and groups, by Wolfgang Woess, Cambridge Tracts , 2001 .
[45] Graphs Between the Elliptic and Parabolic Harnack Inequalities , 2002 .
[46] Isoperimetric constants and estimates of heat kernels of pre Sierpinski carpets , 1990 .
[47] Laurent Saloff-Coste,et al. Aspects of Sobolev-type inequalities , 2001 .
[48] Angelika Mueller,et al. Principles Of Random Walk , 2016 .
[49] A. Grigor’yan,et al. Sub-Gaussian estimates of heat kernels on infinite graphs, to appera in Duke Math , 2001 .
[50] Asaf Nachmias,et al. The Alexander-Orbach conjecture holds in high dimensions , 2008, 0806.1442.
[51] M. Folz. Volume growth and stochastic completeness of graphs , 2012, 1201.5908.
[52] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1951 .
[53] S. Gersten. Essays in Group Theory , 2011 .
[54] A. Grigor’yan,et al. The discrete integral maximum principle and its applications , 2005 .
[55] P. Diaconis,et al. Geometric Bounds for Eigenvalues of Markov Chains , 1991 .
[56] P. Buser. A note on the isoperimetric constant , 1982 .
[57] D. Aronson,et al. Bounds for the fundamental solution of a parabolic equation , 1967 .
[58] Thierry Coulhon. Espaces de Lipschitz et inégalités de Poincaré , 1996 .
[59] David Williams,et al. Probability with Martingales , 1991, Cambridge mathematical textbooks.
[60] Alexander Grigor'yan,et al. Heat kernel upper bounds on a complete non-compact manifold. , 1994 .
[61] F. G. Foster. On the Stochastic Matrices Associated with Certain Queuing Processes , 1953 .
[62] Jean-François Mertens,et al. Necessary and sufficient conditions for recurrence and transience of Markov chains, in terms of inequalities , 1978 .
[63] Peter G. Doyle,et al. Random Walks and Electric Networks: REFERENCES , 1987 .
[64] M. Barlow,et al. Gaussian bounds and parabolic Harnack inequality on locally irregular graphs , 2016 .
[65] A. Grigor’yan,et al. On stochastic completeness of jump processes , 2012 .
[66] Robin Pemantle,et al. Unpredictable paths and percolation , 1998 .
[67] A. Grigor’yan. THE HEAT EQUATION ON NONCOMPACT RIEMANNIAN MANIFOLDS , 1992 .
[68] Motoko Kotani,et al. Discrete Geometric Analysis , 2004 .
[69] D. Stroock,et al. Upper bounds for symmetric Markov transition functions , 1986 .
[70] J. Kemeny,et al. Denumerable Markov chains , 1969 .
[71] J. Deny,et al. Espaces de dirichlet , 1958 .
[72] Thierry Delmotte,et al. Parabolic Harnack inequality and estimates of Markov chains on graphs , 1999 .
[73] V. V. Buldygin,et al. Brunn-Minkowski inequality , 2000 .
[74] Rayleigh. The Problem of the Random Walk , 1905, Nature.
[75] Elizabeth L. Wilmer,et al. Markov Chains and Mixing Times , 2008 .
[76] Gregory F. Lawler,et al. Random Walk: A Modern Introduction , 2010 .
[77] N. Varopoulos,et al. Isoperimetric inequalities and Markov chains , 1985 .
[78] M. Gromov. Groups of polynomial growth and expanding maps , 1981 .
[79] Masahiko Kanai,et al. Rough isometries, and combinatorial approximations of geometries of non ∙ compact riemannian manifolds , 1985 .
[80] Terry Lyons. A Simple Criterion for Transience of a Reversible Markov Chain , 1983 .
[81] P. Soardi,et al. Proceedings of the American Mathematical Society Rough Isometries and Dirichlet Finite Harmonic Functions on Graphs , 2022 .
[82] J. Cheeger. A lower bound for the smallest eigenvalue of the Laplacian , 1969 .
[83] J. Moser. On a pointwise estimate for parabolic differential equations , 1971 .
[84] J. Nash. Continuity of Solutions of Parabolic and Elliptic Equations , 1958 .
[85] L. Saloff-Coste,et al. A note on Poincaré, Sobolev, and Harnack inequalities , 1992 .
[86] Klaus Truemper,et al. On the delta-wye reduction for planar graphs , 1989, J. Graph Theory.
[87] Boris Hanin,et al. Which Neural Net Architectures Give Rise To Exploding and Vanishing Gradients? , 2018, NeurIPS.
[88] R. J. Duffin,et al. The extremal length of a network , 1962 .