Bounds on the complexity of halfspace intersections when the bounded faces have small dimension

We study the combinatorial complexity of D-dimensional polyhedra defined as the intersection of n halfspaces, with the property that the highest dimension of any bounded face is much smaller than D. We show that, if d is the maximum dimension of a bounded face, then the number of vertices of the polyhedron is O(nd) and the total number of bounded faces of the polyhedron is O(nd 2). For inputs in general position the number of bounded faces is O(nd). For any fixed d, we show how to compute the set of all vertices, how to determine the maximum dimension of a bounded face of the polyhedron, and how to compute the set of bounded faces in polynomial time, by solving a polynomial number of linear programs.

[1]  T. H. Matheiss,et al.  A Survey and Comparison of Methods for Finding All Vertices of Convex Polyhedral Sets , 1980, Math. Oper. Res..

[2]  David Eppstein,et al.  Trees with Convex Faces and Optimal Angles , 2006, Graph Drawing.

[3]  A. Dress Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: A note on combinatorial properties of metric spaces , 1984 .

[4]  Micha Sharir,et al.  A subexponential bound for linear programming , 1992, SCG '92.

[5]  H. Hirai Characterization of the Distance between Subtrees of a Tree by the Associated Tight Span , 2006 .

[6]  David Eppstein,et al.  Finding the k Shortest Paths , 1999, SIAM J. Comput..

[7]  Mike Develin A Complexity Bound on Faces of the Hull Complex , 2004, Discret. Comput. Geom..

[8]  Bernard Chazelle,et al.  An optimal convex hull algorithm in any fixed dimension , 1993, Discret. Comput. Geom..

[9]  Shang-Hua Teng,et al.  Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time , 2001, STOC '01.

[10]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[11]  C. Roos,et al.  Interior Point Methods for Linear Optimization , 2005 .

[12]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[13]  GARRET SWART,et al.  Finding the Convex Hull Facet by Facet , 1985, J. Algorithms.

[14]  Marek Chrobak,et al.  Generosity helps, or an 11–competitive algorithm for three servers , 1992, SODA '92.

[15]  Marc E. Pfetsch,et al.  Computing the bounded subcomplex of an unbounded polyhedron , 2010, Comput. Geom..

[16]  M. Queyranne,et al.  K best solutions to combinatorial optimization problems , 1985 .

[17]  Maurice Queyranne,et al.  Structure of a simple scheduling polyhedron , 1993, Math. Program..

[18]  V. Klee Polytope pairs and their relationship to linear programming , 1974 .

[19]  Raimund Seidel,et al.  Constructing higher-dimensional convex hulls at logarithmic cost per face , 1986, STOC '86.

[20]  David Avis,et al.  How good are convex hull algorithms? , 1995, SCG '95.

[21]  Kevin Q. Brown,et al.  Voronoi Diagrams from Convex Hulls , 1979, Inf. Process. Lett..

[22]  David Avis,et al.  A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra , 1991, SCG '91.

[23]  M. E. Dyer,et al.  The Complexity of Vertex Enumeration Methods , 1983, Math. Oper. Res..

[24]  J. Isbell Six theorems about injective metric spaces , 1964 .

[25]  Raimund Seidel,et al.  The Upper Bound Theorem for Polytopes: an Easy Proof of Its Asymptotic Version , 1995, Comput. Geom..

[26]  David Eppstein Manhattan orbifolds , 2006 .

[27]  Mike Develin,et al.  Dimensions of Tight Spans , 2004, math/0407317.

[28]  Nimrod Megiddo,et al.  Towards a Genuinely Polynomial Algorithm for Linear Programming , 1983, SIAM J. Comput..

[29]  Donald R. Chand,et al.  An Algorithm for Convex Polytopes , 1970, JACM.

[30]  B. Sturmfels,et al.  Tropical Convexity , 2003, math/0308254.

[31]  A. Charnes Optimality and Degeneracy in Linear Programming , 1952 .

[32]  P. McMullen The maximum numbers of faces of a convex polytope , 1970 .

[33]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[34]  Greg N. Frederickson,et al.  Ambivalent data structures for dynamic 2-edge-connectivity and k smallest spanning trees , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[35]  G. Ziegler Lectures on Polytopes , 1994 .

[36]  Giuseppe Liotta,et al.  Voronoi drawings of trees , 2003, Comput. Geom..

[37]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[38]  David Eppstein,et al.  Optimally Fast Incremental Manhattan Plane Embedding and Planar Tight Span Construction , 2009, J. Comput. Geom..