A Jackknifed estimators for the negative binomial regression model

ABSTRACT Shrinkage estimator is a commonly applied solution to the general problem caused by multicollinearity. Recently, the ridge regression (RR) estimators for estimating the ridge parameter k in the negative binomial (NB) regression have been proposed. The Jackknifed estimators are obtained to remedy the multicollinearity and reduce the bias. A simulation study is provided to evaluate the performance of estimators. Both mean squared error (MSE) and the percentage relative error (PRE) are considered as the performance criteria. The simulated result indicated that some of proposed Jackknifed estimators should be preferred to the ML method and ridge estimators to reduce MSE and bias.

[1]  J. T. Wulu,et al.  Regression analysis of count data , 2002 .

[2]  K. Månsson Developing a Liu estimator for the negative binomial regression model: method and application , 2013 .

[3]  K. Månsson On ridge estimators for the negative binomial regression model , 2012 .

[4]  A. E. Hoerl,et al.  Ridge regression: biased estimation for nonorthogonal problems , 2000 .

[5]  G. Özel,et al.  A new modified Jackknifed estimator for the Poisson regression model , 2016 .

[6]  Kristofer Månsson,et al.  A Poisson ridge regression estimator , 2011 .

[7]  Y. Chaubey,et al.  Jackknifing the Ridge Regression Estimator: A Revisit , 2014 .

[8]  Murat Erisoglu,et al.  Developing a restricted two-parameter Liu-type estimator: A comparison of restricted estimators in the binary logistic regression model , 2017 .

[10]  H. Nyquist Applications of the jackknife procedure in ridge regression , 1988 .

[11]  R. Schaefer,et al.  A ridge logistic estimator , 1984 .

[12]  Ghazi Shukur,et al.  Some Modifications for Choosing Ridge Parameters , 2006 .

[13]  D. N. Kashid,et al.  A Jackknifed Ridge M-estimator for Regression Model with Multicollinearity and Outliers , 2011 .

[14]  D. Hinkley Jackknifing in Unbalanced Situations , 1977 .

[15]  I Lomb,et al.  The efficiency of jack-knifed and usual ridge type estimators: A comparison , 1991 .

[16]  G. Shukur,et al.  Developing Ridge Parameters for SUR Model , 2008 .

[17]  G. Khalaf,et al.  Choosing Ridge Parameter for Regression Problems , 2005 .

[18]  B. M. Golam Kibria,et al.  A restricted Liu estimator for binary regression models and its application to an applied demand system , 2015 .

[19]  Hu Yang,et al.  A two-parameter estimator in the negative binomial regression model , 2014 .

[20]  J. Hilbe Negative Binomial Regression: Preface , 2007 .

[21]  B. M. Golam Kibria,et al.  Please Scroll down for Article Communications in Statistics -simulation and Computation on Some Ridge Regression Estimators: an Empirical Comparisons on Some Ridge Regression Estimators: an Empirical Comparisons , 2022 .

[22]  T. V. Ramanathan,et al.  THE EFFICIENCY OF MODIFIED JACKKNIFE AND RIDGE TYPE REGRESSION ESTIMATORS: A COMPARISON , 2008 .

[24]  B. M. Golam Kibria,et al.  A Simulation Study of Some Biasing Parameters for the Ridge Type Estimation of Poisson Regression , 2015, Commun. Stat. Simul. Comput..