A Jackknifed estimators for the negative binomial regression model
暂无分享,去创建一个
[1] J. T. Wulu,et al. Regression analysis of count data , 2002 .
[2] K. Månsson. Developing a Liu estimator for the negative binomial regression model: method and application , 2013 .
[3] K. Månsson. On ridge estimators for the negative binomial regression model , 2012 .
[4] A. E. Hoerl,et al. Ridge regression: biased estimation for nonorthogonal problems , 2000 .
[5] G. Özel,et al. A new modified Jackknifed estimator for the Poisson regression model , 2016 .
[6] Kristofer Månsson,et al. A Poisson ridge regression estimator , 2011 .
[7] Y. Chaubey,et al. Jackknifing the Ridge Regression Estimator: A Revisit , 2014 .
[8] Murat Erisoglu,et al. Developing a restricted two-parameter Liu-type estimator: A comparison of restricted estimators in the binary logistic regression model , 2017 .
[10] H. Nyquist. Applications of the jackknife procedure in ridge regression , 1988 .
[11] R. Schaefer,et al. A ridge logistic estimator , 1984 .
[12] Ghazi Shukur,et al. Some Modifications for Choosing Ridge Parameters , 2006 .
[13] D. N. Kashid,et al. A Jackknifed Ridge M-estimator for Regression Model with Multicollinearity and Outliers , 2011 .
[14] D. Hinkley. Jackknifing in Unbalanced Situations , 1977 .
[15] I Lomb,et al. The efficiency of jack-knifed and usual ridge type estimators: A comparison , 1991 .
[16] G. Shukur,et al. Developing Ridge Parameters for SUR Model , 2008 .
[17] G. Khalaf,et al. Choosing Ridge Parameter for Regression Problems , 2005 .
[18] B. M. Golam Kibria,et al. A restricted Liu estimator for binary regression models and its application to an applied demand system , 2015 .
[19] Hu Yang,et al. A two-parameter estimator in the negative binomial regression model , 2014 .
[20] J. Hilbe. Negative Binomial Regression: Preface , 2007 .
[21] B. M. Golam Kibria,et al. Please Scroll down for Article Communications in Statistics -simulation and Computation on Some Ridge Regression Estimators: an Empirical Comparisons on Some Ridge Regression Estimators: an Empirical Comparisons , 2022 .
[22] T. V. Ramanathan,et al. THE EFFICIENCY OF MODIFIED JACKKNIFE AND RIDGE TYPE REGRESSION ESTIMATORS: A COMPARISON , 2008 .
[24] B. M. Golam Kibria,et al. A Simulation Study of Some Biasing Parameters for the Ridge Type Estimation of Poisson Regression , 2015, Commun. Stat. Simul. Comput..