Influence of Electron Molecule Resonant Vibrational Collisions over the Symmetric Mode and Direct Excitation-Dissociation Cross Sections of CO2 on the Electron Energy Distribution Function and Dissociation Mechanisms in Cold Pure CO2 Plasmas.

A new set of electron-vibrational (e-V) processes linking the first 10 vibrational levels of the symmetric mode of CO2 is derived by using a decoupled vibrational model and inserted in the Boltzmann equation for the electron energy distribution function (eedf). The new eedf and dissociation rates are in satisfactory agreement with the corresponding ones obtained by using the e-V cross sections reported in the database of Hake and Phelps (H-P). Large differences are, on the contrary, found when the experimental dissociation cross sections of Cosby and Helm are inserted in the Boltzman equation. Comparison of the corresponding rates with those obtained by using the low-energy threshold energy, reported in the H-P database, shows differences up to orders of magnitude, which decrease with the increasing of the reduced electric field. In all cases, we show the importance of superelastic vibrational collisions in affecting eedf and dissociation rates either in the direct electron impact mechanism or in the pure vibrational mechanism.

[1]  M. Capitelli,et al.  Non equilibrium vibrational assisted dissociation and ionization mechanisms in cold CO 2 plasmas , 2016 .

[2]  M. Capitelli,et al.  Electron energy distribution functions and fractional power transfer in “cold” and excited CO2 discharge and post discharge conditions , 2016 .

[3]  K. Hassouni,et al.  Fundamental Aspects of Plasma Chemical Physics: Kinetics , 2015 .

[4]  A. Lombardi,et al.  Energy transfer upon collision of selectively excited CO2 molecules: State-to-state cross sections and probabilities for modeling of atmospheres and gaseous flows. , 2015, The Journal of chemical physics.

[5]  M. Capitelli,et al.  Vibrational excitation and dissociation mechanisms of CO2 under non-equilibrium discharge and post-discharge conditions , 2015 .

[6]  A. Bogaerts,et al.  Carbon dioxide splitting in a dielectric barrier discharge plasma: a combined experimental and computational study. , 2015, ChemSusChem.

[7]  H. Berberoğlu,et al.  Dissociation of carbon dioxide using a microhollow cathode discharge plasma reactor: effects of applied voltage, flow rate and concentration , 2015 .

[8]  A. Bogaerts,et al.  Evaluation of the energy efficiency of CO2 conversion in microwave discharges using a reaction kinetics model , 2014 .

[9]  Mario Capitelli,et al.  The role of radiative reabsorption on the electron energy distribution functions in H2/He plasma expansion through a tapered nozzle , 2014 .

[10]  E. Kustova,et al.  Vibrational-Chemical Kinetics in Mars Entry Problems , 2014 .

[11]  J. M. Wadehra,et al.  Molecular physics of elementary processes relevant to hypersonics: Electron-molecule collisions , 2014 .

[12]  M. Capitelli,et al.  Nonequilibrium dissociation mechanisms in low temperature nitrogen and carbon monoxide plasmas , 2014 .

[13]  A. Bogaerts,et al.  Splitting of CO2 by vibrational excitation in non-equilibrium plasmas: a reaction kinetics model , 2014 .

[14]  R. Snyders,et al.  Optical characterization of a microwave pulsed discharge used for dissociation of CO2 , 2014 .

[15]  H. Berberoğlu,et al.  Dissociation of Carbon Dioxide Using a Microdischarge Plasma Reactor , 2013 .

[16]  Elena Kustova,et al.  State-to-state models for CO2 molecules: From the theory to an application to hypersonic boundary layers , 2013 .

[17]  X. Tu,et al.  Plasma-Based Dry Reforming: A Computational Study Ranging from the Nanoseconds to Seconds Time Scale , 2013 .

[18]  Andrea Lombardi,et al.  A full dimensional grid empowered simulation of the CO2 + CO2 processes , 2012, J. Comput. Chem..

[19]  Xiaoyan Dai,et al.  CH4–CO2 reforming by plasma – challenges and opportunities , 2011 .

[20]  Mario Capitelli,et al.  An efficient energy-conserving numerical model for the electron energy distribution function in the presence of electron-electron collisions , 2010, Comput. Phys. Commun..

[21]  Jonathan Tennyson,et al.  Electron–molecule collision calculations using the R-matrix method , 2010 .

[22]  J. Jovanovi,et al.  Measurement and interpretation of swarm parameters and their application in plasma modelling , 2009 .

[23]  M. Brunger,et al.  Carbon dioxide electron cooling rates in the atmospheres of Mars and Venus , 2008 .

[24]  Mario Capitelli,et al.  Boltzmann and Master Equations for Magnetohydrodynamics in Weakly Ionized Gases , 2008 .

[25]  Chul B. Park Rate Parameters for Electronic Excitation of Diatomic Molecules 1. Electron-Impact Processes , 2008 .

[26]  G. Poparić,et al.  RESONANT EXCITATION OF MOLECULES BY LOW-ENERGY ELECTRONS UDC 539.17 , 2008 .

[27]  D. Yang,et al.  Gliding arc plasma processing of CO2 conversion. , 2007, Journal of hazardous materials.

[28]  D. Pagano,et al.  Non-equilibrium plasma kinetics: a state-to-state approach , 2007 .

[29]  F. Esposito,et al.  On the Coupling of Vibrational Relaxation with the Dissociation−Recombination Kinetics: From Dynamics to Aerospace Applications† , 2004 .

[30]  Robert Robson,et al.  Is the classical two-term approximation of electron kinetic theory satisfactory for swarms and plasmas? , 2003 .

[31]  H. Meyer,et al.  Resonant vibrational excitation of CO{sub 2} by electron impact: Nuclear dynamics on the coupled components of the {sup 2}{pi}{sub u} resonance , 2003 .

[32]  H. Meyer,et al.  Resonant vibrational excitation of C02 by electron impact: Nucleardynamics on the coupled components of the 2PIu resonance , 2002 .

[33]  A. Napartovich,et al.  Electron temperature in nitrogen afterglow: Dependence of theoretical results on the adopted set of cross sections and on the type of molecular distribution over vibrational levels , 2002 .

[34]  M. Allan Selectivity in the excitation of fermi-coupled vibrations in CO2 by impact of slow electrons. , 2001, Physical review letters.

[35]  L. Y. Sergeeva,et al.  Method of cross section calculation for vibrational excitation of polyatomic molecules by slow electrons: Analysis of the role of Fermi resonance in the CO{sub 2} molecule , 1994 .

[36]  M. Capitelli,et al.  The influence of electron—electron collisions on electron energy distribution functions in N2 post discharge , 1993 .

[37]  P. Cosby,et al.  Dissociation Rates of Diatomic Molecules , 1992 .

[38]  J. Loureiro,et al.  Non-equilibrium kinetics in nitrogen discharges: a comparative analysis of two theoretical approaches , 1990 .

[39]  J Loureiro,et al.  Non-equilibrium kinetics in nitrogen discharges: a comparative analysis of two theoretical approaches , 1990 .

[40]  D. Newman,et al.  Electron scattering from vibrationally excited CO2 , 1987 .

[41]  J. M. Wadehra Vibrational Excitation and Dissociative Attachment , 1986 .

[42]  D. Slovetsky,et al.  Vibrationally excited molecules and mechanisms of chemical and physical processes in non-equilibrium plasmas , 1983 .

[43]  G. D. Billing,et al.  V—V pumping up in non-equilibrium nitrogen: Effects on the dissoviation rate , 1980 .

[44]  J. Reid,et al.  New techniques for determining vibrational temperatures, dissociation, and gain limitations in CW CO 2 lasers , 1980 .

[45]  M. Capitelli,et al.  Kinetics of dissociation processes in plasmas in the low and intermediate presssure range , 1980 .

[46]  Mundiyath Venugopalan,et al.  Plasma Chemistry I , 1980 .

[47]  M. Zubek,et al.  Calculation of cross sections for vibrational excitation and de-excitation of CO2 by electronic collisions , 1978 .

[48]  A. Fridman,et al.  A nonequilibrium plasma-chemical process of CO2 dissociation in high-frequency and ultrahigh-frequency discharges , 1978 .

[49]  P. Capezzuto,et al.  Contribution of vibrational excitation to the rate of carbon dioxide dissociation in electrical discharges , 1976 .

[50]  A. Smith,et al.  Dissociation mechanism in pulsed and continuous CO2 lasers , 1974 .

[51]  Stephen D. Rockwood,et al.  Elastic and Inelastic Cross Sections for Electron-Hg Scattering from Hg Transport Data , 1973 .

[52]  K. Kutszegi Corvin,et al.  DISSOCIATION OF CARBON DIOXIDE IN THE POSITIVE COLUMN OF A GLOW DISCHARGE. , 1969 .

[53]  A. V. Phelps,et al.  Momentum-Transfer and Inelastic-Collision Cross Sections for Electrons in O-2, CO, and C O-2 , 1967 .