Spectral Galerkin boundary element methods for high-frequency sound-hard scattering problems

This paper is concerned with the design of two different classes of Galerkin boundary element methods for the solution of high-frequency sound-hard scattering problems in the exterior of two-dimensional smooth convex scatterers. Both methods require a small increase in the order of $k^{\epsilon}$ (for any $\epsilon >0$) in the number of degrees of freedom to guarantee frequency independent precisions with increasing wavenumber $k$. In addition, the accuracy of the numerical solutions are independent of frequency provided sufficiently many terms in the asymptotic expansion are incorporated into the integral equation formulation. Numerical results validate our theoretical findings.

[1]  Francisco-Javier Sayas,et al.  Convergence analysis of a high-order Nyström integral-equation method for surface scattering problems , 2011, Numerische Mathematik.

[2]  J. Cea Approximation variationnelle des problèmes aux limites , 1964 .

[3]  Jens Markus Melenk,et al.  A High Frequency hp Boundary Element Method for Scattering by Convex Polygons , 2013, SIAM J. Numer. Anal..

[4]  W. Chew,et al.  Multilevel Fast Multipole Acceleration in the Nyström Discretization of Surface Electromagnetic Integral Equations for Composite Objects , 2010, IEEE Transactions on Antennas and Propagation.

[5]  André Martinez,et al.  An Introduction to Semiclassical and Microlocal Analysis , 2002 .

[6]  C. Geuzaine,et al.  On the O(1) solution of multiple-scattering problems , 2005, IEEE Transactions on Magnetics.

[7]  Eike Hermann Müller,et al.  Wavenumber-explicit analysis for the Helmholtz h-BEM: error estimates and iteration counts for the Dirichlet problem , 2016, Numerische Mathematik.

[8]  Stephen Langdon,et al.  A high frequency boundary element method for scattering by a class of nonconvex obstacles , 2014, Numerische Mathematik.

[9]  Stephen Langdon,et al.  High frequency scattering by convex curvilinear polygons , 2010, J. Comput. Appl. Math..

[10]  Yassine Boubendir,et al.  Wave-number estimates for regularized combined field boundary integral operators in acoustic scattering problems with Neumann boundary conditions , 2013 .

[11]  Michael J. Rycroft,et al.  Computational Electrodynamics, The Finite-Difference Time-Domain Method , 1996 .

[12]  Fatih Ecevit,et al.  Frequency independent solvability of surface scattering problems , 2018 .

[13]  Fernando Reitich,et al.  Prescribed error tolerances within fixed computational times for scattering problems of arbitrarily high frequency: the convex case , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[14]  Fatih Ecevit,et al.  Frequency-adapted Galerkin boundary element methods for convex scattering problems , 2017, Numerische Mathematik.

[15]  Joseph B. Keller,et al.  An Asymptotically Derived Boundary Element Method for the Helmholtz Equation , 2004 .

[16]  Fatih Ecevit,et al.  A Galerkin BEM for high-frequency scattering problems based on frequency dependent changes of variables , 2016, 1609.02216.

[17]  Stephen Langdon,et al.  Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering* , 2012, Acta Numerica.

[18]  Simon N. Chandler-Wilde,et al.  High-frequency Bounds for the Helmholtz Equation Under Parabolic Trapping and Applications in Numerical Analysis , 2017, SIAM J. Math. Anal..

[19]  Warren P. Johnson The Curious History of Faà di Bruno's Formula , 2002, Am. Math. Mon..

[20]  Ivan G. Graham,et al.  A hybrid numerical-asymptotic boundary integral method for high-frequency acoustic scattering , 2007, Numerische Mathematik.

[21]  Jeffrey Galkowski,et al.  Distribution of Resonances in Scattering by Thin Barriers , 2014, Memoirs of the American Mathematical Society.

[22]  O. Bruno,et al.  An O(1) integration scheme for three-dimensional surface scattering problems , 2007 .

[23]  Oubay Hassan,et al.  A high order hybrid finite element method applied to the solution of electromagnetic wave scattering problems in the time domain , 2009 .

[24]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[25]  Y. Boubendir,et al.  Asymptotic expansions of the Helmholtz equation solutions using approximations of the Dirichlet to Neumann operator , 2016, 1610.09727.

[26]  Daan Huybrechs,et al.  A Sparse Discretization for Integral Equation Formulations of High Frequency Scattering Problems , 2007, SIAM J. Sci. Comput..

[27]  S. Amini,et al.  Multi-level fast multipole solution of the scattering problem , 2003 .

[28]  R. Namburu,et al.  Scalable Electromagnetic Simulation Environment , 2004 .

[29]  Fernando Reitich,et al.  Analysis of Multiple Scattering Iterations for High-frequency Scattering Problems. I: the Two-dimensional Case Analysis of Multiple Scattering Iterations for High-frequency Scattering Problems. I: the Two-dimensional Case , 2006 .

[30]  Michael Taylor,et al.  Near peak scattering and the corrected Kirchhoff approximation for a convex obstacle , 1985 .

[31]  O. Bruno,et al.  A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications , 2001 .

[32]  Simon N. Chandler-Wilde,et al.  Boundary integral methods in high frequency scattering , 2009 .

[33]  J. Hesthaven,et al.  High-Order Accurate Methods for Time-domain Electromagnetics , 2004 .

[34]  Samuel P. Groth,et al.  Hybrid numerical-asymptotic approximation for high-frequency scattering by penetrable convex polygons , 2015 .

[35]  R. Melrose Local Fourier-Airy integral operators , 1975 .

[36]  Daniele Boffi,et al.  Finite element approximation of eigenvalue problems , 2010, Acta Numerica.

[37]  M. Fedoryuk,et al.  The stationary phase method and pseudodifferential operators , 1971 .

[38]  Stephen Langdon,et al.  A frequency-independent boundary element method for scattering by two-dimensional screens and apertures , 2014, 1401.2786.

[39]  David P. Hewett,et al.  Shadow boundary effects in hybrid numerical-asymptotic methods for high-frequency scattering , 2015, European Journal of Applied Mathematics.

[40]  R. Kress,et al.  Integral equation methods in scattering theory , 1983 .

[41]  Lehel Banjai,et al.  Hierarchical matrix techniques for low- and high-frequency Helmholtz problems , 2007 .

[42]  M. Mokgolele,et al.  A High Frequency Boundary Element Method for Scattering by Convex Polygons with Impedance Boundary Conditions , 2012 .

[43]  Stephen Langdon,et al.  A Galerkin Boundary Element Method for High Frequency Scattering by Convex Polygons , 2007, SIAM J. Numer. Anal..

[44]  Samuel P. Groth,et al.  A hybrid numerical–asymptotic boundary element method for high frequency scattering by penetrable convex polygons , 2017, 1704.07745.

[45]  M.R. Visbal,et al.  Time-domain scattering simulations using a high-order overset-grid approach , 2005, Workshop on Computational Electromagnetics in Time-Domain, 2005. CEM-TD 2005..

[46]  Akash Anand,et al.  Analysis of multiple scattering iterations for high-frequency scattering problems. II: The three-dimensional scalar case , 2009, Numerische Mathematik.