Compression of Vehicle Trajectories with a Variational Autoencoder

[1]  Andrew McGordon,et al.  Adaptive tactical behaviour planner for autonomous ground vehicle , 2016, 2016 UKACC 11th International Conference on Control (CONTROL).

[2]  Mohan M. Trivedi,et al.  How Would Surround Vehicles Move? A Unified Framework for Maneuver Classification and Motion Prediction , 2018, IEEE Transactions on Intelligent Vehicles.

[3]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[4]  Pan Zhao,et al.  A Scenario-Adaptive Driving Behavior Prediction Approach to Urban Autonomous Driving , 2017 .

[5]  Péter Gáspár,et al.  Challenges and Possibilities of Overtaking Strategies for Autonomous Vehicles , 2020 .

[6]  Fengjun Yan,et al.  Lane changing prediction at highway lane drops using support vector machine and artificial neural network classifiers , 2016, 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM).

[7]  Manuel Ocaña,et al.  Detection and Tracking of Moving Obstacles (DATMO): A Review , 2019, Robotica.

[8]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[9]  Ronald J. Williams,et al.  A Learning Algorithm for Continually Running Fully Recurrent Neural Networks , 1989, Neural Computation.

[10]  Jeroen Ploeg Cooperative Automated Driving: From Platooning to Maneuvering , 2019, SMARTGREENS.

[11]  Ulrich Kressel,et al.  Probabilistic trajectory prediction with Gaussian mixture models , 2012, 2012 IEEE Intelligent Vehicles Symposium.

[12]  Szilárd Aradi,et al.  Lane Change Prediction Using Gaussian Classification, Support Vector Classification and Neural Network Classifiers , 2020 .

[13]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .