Mesh ratios for best-packing and limits of minimal energy configurations

For N-point best-packing configurations ωN on a compact metric space (A,ρ), we obtain estimates for the mesh-separation ratio γ(ωN,A), which is the quotient of the covering radius of ωN relative to A and the minimum pairwise distance between points in ωN. For best-packing configurations ωN that arise as limits of minimal Riesz s-energy configurations as s→∞, we prove that γ(ωN,A)≦1 and this bound can be attained even for the sphere. In the particular case when N=5 on S2 with ρ the Euclidean metric, we prove our main result that among the infinitely many 5-point best-packing configurations there is a unique configuration, namely a square-base pyramid $\omega_{5}^{*}$, that is the limit (as s→∞) of 5-point s-energy minimizing configurations. Moreover, $\gamma(\omega_{5}^{*},S^{2})=1$.

[1]  Henry Cohn,et al.  New upper bounds on sphere packings I , 2001, math/0110009.

[2]  V. Andreev A spherical code , 1999 .

[3]  Николай Николаевич Андреев,et al.  Один сферический код@@@A spherical code , 1999 .

[4]  Isaac Z. Pesenson,et al.  A sampling theorem on homogeneous manifolds , 2000 .

[5]  Grady B. Wright,et al.  Stability and Error Estimates for Vector Field Interpolation and Decomposition on the Sphere with RBFs , 2009, SIAM J. Numer. Anal..

[6]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[7]  Henry Cohn,et al.  Universally optimal distribution of points on spheres , 2006, math/0607446.

[8]  Robert Schaback,et al.  Error estimates and condition numbers for radial basis function interpolation , 1995, Adv. Comput. Math..

[9]  D. Legg,et al.  Discrete Logarithmic Energy on the Sphere , 2002 .

[10]  G. Kuperberg Notions of denseness , 1999, math/9908003.

[11]  Richard Evan Schwartz,et al.  The Five-Electron Case of Thomson’s Problem , 2013, Exp. Math..

[12]  William R. Smith,et al.  Extremal arrangements of points and unit charges on a sphere: equilibrium configurations revisited , 1977 .

[13]  Edward B. Saff,et al.  Quasi-uniformity of minimal weighted energy points on compact metric spaces , 2011, J. Complex..

[14]  K. Böröczky Finite Packing and Covering , 2004 .

[15]  Holger Wendland,et al.  Direct and Inverse Sobolev Error Estimates for Scattered Data Interpolation via Spherical Basis Functions , 2007, Found. Comput. Math..

[16]  Thomas C. Hales Sphere packings, I , 1997, Discret. Comput. Geom..

[17]  E. Saff,et al.  Asymptotics of best-packing on rectifiable sets , 2006, math-ph/0605021.

[18]  Holger Wendland,et al.  Multiscale Analysis in Sobolev Spaces on the Sphere , 2010, SIAM J. Numer. Anal..

[19]  E. Saff,et al.  Discretizing Manifolds via Minimum Energy Points , 2004 .