Quadrupole collectivity in silicon isotopes approaching neutron number N = 28

[1]  B. Jurado,et al.  Mass measurements of neutron-rich nuclei near the N = 20 and 28 shell closures , 2007 .

[2]  B. A. Brown,et al.  Shell structure at N = 28 near the dripline : Spectroscopy of 42Si, 43P, and 44S , 2006, nucl-ex/0608023.

[3]  A. Latina,et al.  Study of the neutron-rich nucleus Si36 , 2006 .

[4]  S. Shimoura,et al.  Liquid hydrogen and helium targets for radioisotope beams at RIKEN , 2005 .

[5]  B. A. Brown,et al.  Thick-target inverse-kinematics proton scattering from Ar 46 and the N = 28 shell below Ca 48 , 2005 .

[6]  B. A. Brown,et al.  ‘Magic’ nucleus 42Si , 2005, Nature.

[7]  M. Nespolo,et al.  Effective charges in the fp shell. , 2004, Physical review letters.

[8]  F. Nowacki,et al.  The N=28 shell closure; from N=Z to the neutron drip line , 2004, nucl-th/0403080.

[9]  J. Yurkon,et al.  The S800 spectrograph , 2003 .

[10]  A. Stolz,et al.  Commissioning the A1900 projectile fragment separator , 2003 .

[11]  Arjan J. Koning,et al.  Local and global nucleon optical models from 1 keV to 200 MeV , 2003 .

[12]  J. Duprat,et al.  Shape evolution in heavy sulfur isotopes and erosion of the N=28 shell closure , 2002 .

[13]  G. Hackman,et al.  Thirty-two-fold segmented germanium detectors to identify /γ-rays from intermediate-energy exotic beams , 2001 .

[14]  C. Miehe,et al.  Spectroscopy of Si-34,35 by beta decay: sd-fp shell gap and single particle states , 2001 .

[15]  Boris Pritychenko,et al.  Proton scattering by the unstable neutron-rich isotopes 42,44 Ar , 2000 .

[16]  Takashi S. Nakamura,et al.  Quadrupole deformation of 12Be studied by proton inelastic scattering , 2000 .

[17]  Y. Blumenfeld,et al.  Proton scattering by short lived sulfur isotopes , 1999 .

[18]  J. Yurkon,et al.  Focal plane detector for the S800 high-resolution spectrometer , 1999 .

[19]  K. Kemper,et al.  Persistence of the N=28 shell closure in neutron-rich nuclei , 1998 .

[20]  B. A. Brown,et al.  Inelastic proton scattering and nuclear structure towards the drip lines , 1998 .

[21]  B. A. Brown,et al.  QUADRUPOLE COLLECTIVITY IN 32,34,36,38SI AND THE N = 20 SHELL CLOSURE , 1998 .

[22]  B. A. Brown,et al.  Collectivity in 44S , 1997 .

[23]  F. Nowacki,et al.  Shell model study of the neutron rich nuclei around N = 28 , 1996, nucl-th/9608003.

[24]  Brown,et al.  Mass systematics for A=29-44 nuclei: The deformed A~32 region. , 1990, Physical review. C, Nuclear physics.

[25]  P. Tikkanen,et al.  TRANSITION PROBABILITY FROM THE GROUND TO THE FIRST-EXCITED 2+ STATE OF EVEN–EVEN NUCLIDES , 2001 .

[26]  Love,et al.  Nucleon-nucleon t-matrix interaction for scattering at intermediate energies. , 1985, Physical review. C, Nuclear physics.

[27]  J. A. Carr,et al.  Determination of nuclear transition densities with various probes , 1985 .

[28]  B. A. Brown,et al.  E2 core polarization for sd-shell single-particle states calculated with a skyrme-type interaction , 1984 .

[29]  V. A. Madsen,et al.  Neutron and proton transition matrix elements and inelastic hadron scattering , 1981 .

[30]  B. A. Brown,et al.  Relative importance of neutron and proton components of nuclear transitions and comparative. pi. /sup -//. pi. /sup +/ inelastic scattering , 1980 .

[31]  K. Knöpfle,et al.  The quasihole aspect of hole strength distributions in odd potassium and calcium isotopes , 1976 .

[32]  S. Koonin,et al.  Shape transition in the neutron rich sodium isotopes , 1975 .

[33]  A. Poskanzer,et al.  Direct measurement of the masses of Li 11 and Na 2 6 − 3 2 with an on-line mass spectrometer , 1975 .

[34]  A. Bohr,et al.  Nuclear Structure, Volume II: Nuclear Deformations , 1975 .

[35]  G. Breit,et al.  Nuclear Structure, Vol. 1 , 1970 .

[36]  L. Castell A new quantum number derived from conformal invariance , 1969 .