The Application of Scanning Electron Microscopy with Energy-Dispersive X-Ray Spectroscopy (SEM-EDX) in Ancient Dental Calculus for the Reconstruction of Human Habits

Abstract The great potential of scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) is in detection of unusual chemical elements included in ancient human dental calculus to verify hypotheses about life and burial habits of historic populations and individuals. Elemental spectra were performed from archeological samples of three chosen individuals from different time periods. The unusual presence of magnesium, aluminum, and silicon in the first sample could confirm the hypothesis of high degree of dental abrasion caused by particles from grinding stones in flour. In the second sample, presence of copper could confirm that bronze jewelery could lie near the buried body. The elemental composition of the third sample with the presence of lead and copper confirms the origin of individual to Napoleonic Wars because the damage to his teeth could be explained by the systematic utilization of the teeth for the opening of paper cartridges (a charge with a dose of gunpowder and a bullet), which were used during the 18th and the 19th century AD. All these results contribute to the reconstruction of life (first and third individual) and burial (second individual) habits of historic populations and individuals.

[1]  M. Steinert,et al.  Step down Vascular Calcification Analysis using State-of-the-Art Nanoanalysis Techniques , 2016, Scientific Reports.

[2]  J. Dudgeon,et al.  Diet, Geography and Drinking Water in Polynesia: Microfossil Research from Archaeological Human Dental Calculus, Rapa Nui (Easter Island) , 2014 .

[3]  Domingo C. Salazar-García,et al.  Assessing use and suitability of scanning electron microscopy in the analysis of micro remains in dental calculus , 2014 .

[4]  C. Lalueza-Fox,et al.  Neanderthal medics? Evidence for food, cooking, and medicinal plants entrapped in dental calculus , 2012, Naturwissenschaften.

[5]  P. Sciulli,et al.  Dirty teeth and ancient trade: Evidence of cotton fibres in human dental calculus from Late Woodland, Ohio , 2011 .

[6]  N. Kardjilov,et al.  Description of the first lithostrotian titanosaur embryo in ovo with Neutron characterization and implications for lithostrotian Aptian migration and dispersion , 2011 .

[7]  H. Preus,et al.  Ancient bacterial DNA (aDNA) in dental calculus from archaeological human remains , 2011 .

[8]  P. Charlier,et al.  The microscopic (optical and SEM) examination of dental calculus deposits (DCD). Potential interest in forensic anthropology of a bio-archaeological method. , 2010, Legal medicine.

[9]  M. Cusack,et al.  Optimizing Electron Backscatter Diffraction of Carbonate Biominerals—Resin Type and Carbon Coating , 2009, Microscopy and Microanalysis.

[10]  R. Wrangham,et al.  Starch Granules, Dental Calculus and New Perspectives on Ancient Diet , 2009 .

[11]  A. Tudhope,et al.  Electron backscatter diffraction (EBSD) as a tool for detection of coral diagenesis , 2008, Coral Reefs.

[12]  A. Henry,et al.  Using plant microfossils from dental calculus to recover human diet: a case study from Tell al-Raqā'i, Syria , 2008 .

[13]  K. Reinhard,et al.  Dental wash: a problematic method for extracting microfossils from teeth ☆ , 2007 .

[14]  Jaroslav Bruzek,et al.  A method for visual determination of sex, using the human hip bone. , 2002, American journal of physical anthropology.

[15]  J. Kirkham,et al.  Morphology and elemental composition of subgingival calculus in two ethnic groups. , 2000, Journal of periodontology.

[16]  B. Latimer,et al.  Oral bacteria in miocene Sivapithecus. , 1997, Journal of human evolution.

[17]  R. Albert,et al.  Phytolith analysis on dental calculus, enamel surface, and burial soil: information about diet and paleoenvironment. , 1996, American journal of physical anthropology.

[18]  B. Arensburg,et al.  Ancient dental calculus and diet , 1996 .

[19]  C. Lovejoy,et al.  Chronological metamorphosis of the auricular surface of the ilium: a new method for the determination of adult skeletal age at death. , 1985, American journal of physical anthropology.

[20]  M. Sundberg,et al.  Crystallography of supragingival and subgingival human dental calculus. , 1985, Scandinavian journal of dental research.

[21]  P. Grøn,et al.  Human dental calculus. Inorganic chemical and crystallographic composition. , 1967, Archives of oral biology.

[22]  P. Mikulík,et al.  Scanning electron microscopy of dental calculus from Great Moravian necropolis Znojmo-Hradiště , 2017 .

[23]  Lukáš Šín,et al.  Charakter pohřebního ritu jako odraz událostí 19. století na střední Moravě , 2014 .

[24]  Simona Šichnárková Petrografický výzkum raně středověkých žernovů ze Znojma-Hradiště , 2014 .

[25]  Ralf E. Mutschelknauss,et al.  Praktická parodontologie : klinické postupy , 2002 .

[26]  A. Linossier,et al.  Paleomicrobiological study in dental calculus: Streptococcus mutans. , 1996, Scanning microscopy.

[27]  S. Weiner,et al.  First Scanning electron microscope analysis of dental calculus from European Neanderthals: Subalyuk, (Middle Paleolithic, Hungary). Preliminary report , 1995 .

[28]  S. Weiner,et al.  Middle Palaeolithic dental bacteria from Kebara, Israël , 1994 .

[29]  B. Smith,et al.  Patterns of molar wear in hunger-gatherers and agriculturalists. , 1984, American journal of physical anthropology.