Inferring turbulent environments via machine learning

[1]  A. Celani,et al.  Optimizing airborne wind energy with reinforcement learning , 2022, The European Physical Journal E.

[2]  Xiaodong Zhang,et al.  Gaussian mixture model for extreme wind turbulence estimation , 2022, Wind Energy Science.

[3]  S. Brunton,et al.  Enhancing computational fluid dynamics with machine learning , 2021, Nature Computational Science.

[4]  Jiaying Liu,et al.  Fashion Meets Computer Vision , 2021, ACM Comput. Surv..

[5]  Heng Xiao,et al.  Frame-independent vector-cloud neural network for nonlocal constitutive modelling on arbitrary grids , 2021, Computer Methods in Applied Mechanics and Engineering.

[6]  M. Linkmann,et al.  Interpreted machine learning in fluid dynamics: explaining relaminarisation events in wall-bounded shear flows , 2021, Journal of Fluid Mechanics.

[7]  S. Griffies,et al.  A coarse-grained decomposition of surface geostrophic kinetic energy in the global ocean , 2021 .

[8]  X. Wenwei,et al.  Deep Learning Experiments for Tropical Cyclone Intensity Forecasts , 2021, Weather and Forecasting.

[9]  F. Toschi,et al.  Deep learning velocity signals allow quantifying turbulence intensity , 2021, Science Advances.

[10]  Stephan Hoyer,et al.  Machine learning–accelerated computational fluid dynamics , 2021, Proceedings of the National Academy of Sciences.

[11]  M. Buzzicotti,et al.  Inertial range statistics of the entropic lattice Boltzmann method in three-dimensional turbulence. , 2021, Physical review. E.

[12]  Francesco Borra,et al.  Using machine-learning modelling to understand macroscopic dynamics in a system of coupled maps , 2020, ArXiv.

[13]  L. Biferale,et al.  Reconstruction of turbulent data with deep generative models for semantic inpainting from TURB-Rot database , 2020, Physical Review Fluids.

[14]  Alexander Kuhnle,et al.  A review on Deep Reinforcement Learning for Fluid Mechanics , 2019, Computers & Fluids.

[15]  Gal Chechik,et al.  On Learning Sets of Symmetric Elements (Extended Abstract) , 2021, IJCAI.

[16]  M. Buzzicotti,et al.  Synchronizing subgrid scale models of turbulence to data , 2020, 2012.00690.

[17]  Karthik Kashinath,et al.  Using Machine Learning to Augment Coarse-Grid Computational Fluid Dynamics Simulations , 2020, ArXiv.

[18]  E. Bodenschatz,et al.  Self-attenuation of extreme events in Navier–Stokes turbulence , 2020, Nature Communications.

[19]  L. Biferale,et al.  TURB-Rot. A large database of 3d and 2d snapshots from turbulent rotating flows , 2020, ArXiv.

[20]  Wen-Huang Cheng,et al.  Fashion Meets Computer Vision , 2020, ACM Comput. Surv..

[21]  Luca Biferale,et al.  Phase transitions and flux-loop metastable states in rotating turbulence , 2020, Physical Review Fluids.

[22]  Ethan Fetaya,et al.  On Learning Sets of Symmetric Elements , 2020, ICML.

[23]  A. Alexakis,et al.  Critical transition in fast-rotating turbulence within highly elongated domains , 2019, Journal of Fluid Mechanics.

[24]  Quoc V. Le,et al.  EfficientDet: Scalable and Efficient Object Detection , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Petros Koumoutsakos,et al.  Machine Learning for Fluid Mechanics , 2019, Annual Review of Fluid Mechanics.

[26]  Marc Bocquet,et al.  Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: a case study with the Lorenz 96 model , 2019, J. Comput. Sci..

[27]  L. Biferale,et al.  Synchronization to Big Data: Nudging the Navier-Stokes Equations for Data Assimilation of Turbulent Flows , 2019, Physical Review X.

[28]  Andreas Geiger,et al.  Computer Vision for Autonomous Vehicles: Problems, Datasets and State-of-the-Art , 2017, Found. Trends Comput. Graph. Vis..

[29]  Uday Pratap Singh,et al.  Applications of Computer Vision in Plant Pathology: A Survey , 2019, Archives of Computational Methods in Engineering.

[30]  Ming Du,et al.  Computer vision algorithms and hardware implementations: A survey , 2019, Integr..

[31]  M. P. Brenner,et al.  Perspective on machine learning for advancing fluid mechanics , 2019, Physical Review Fluids.

[32]  Thomas Peters,et al.  Data-driven science and engineering: machine learning, dynamical systems, and control , 2019, Contemporary Physics.

[33]  Lakshminarayanan Mahadevan,et al.  Controlled gliding and perching through deep-reinforcement-learning , 2019, Physical Review Fluids.

[34]  G. Vecchi,et al.  Author Correction: Recent increases in tropical cyclone intensification rates , 2019, Nature Communications.

[35]  Luca Biferale,et al.  Zermelo's problem: Optimal point-to-point navigation in 2D turbulent flows using Reinforcement Learning , 2019, Chaos.

[36]  Marc Bocquet,et al.  Data assimilation as a learning tool to infer ordinary differential equation representations of dynamical models , 2019, Nonlinear Processes in Geophysics.

[37]  Luca Biferale,et al.  Self-Similar Subgrid-Scale Models for Inertial Range Turbulence and Accurate Measurements of Intermittency. , 2019, Physical review letters.

[38]  Luca Biferale Rotating turbulence , 2019, Journal of Turbulence.

[39]  Steven L. Brunton,et al.  Data-Driven Science and Engineering , 2019 .

[40]  Charles Meneveau,et al.  Application of a self-organizing map to identify the turbulent-boundary-layer interface in a transitional flow , 2019, Physical Review Fluids.

[41]  Keith W. Dixon,et al.  Recent increases in tropical cyclone intensification rates , 2019, Nature Communications.

[42]  Karthik Duraisamy,et al.  Turbulence Modeling in the Age of Data , 2018, Annual Review of Fluid Mechanics.

[43]  Terrence J. Sejnowski,et al.  Glider soaring via reinforcement learning in the field , 2018, Nature.

[44]  Luca Biferale,et al.  Cascades and transitions in turbulent flows , 2018, Physics Reports.

[45]  Prakash Vedula,et al.  Subgrid modelling for two-dimensional turbulence using neural networks , 2018, Journal of Fluid Mechanics.

[46]  Stanislav Pidhorskyi,et al.  Generative Probabilistic Novelty Detection with Adversarial Autoencoders , 2018, NeurIPS.

[47]  Luca Biferale,et al.  On the inverse energy transfer in rotating turbulence , 2018, The European physical journal. E, Soft matter.

[48]  A. Mazzino,et al.  Inferring flow parameters and turbulent configuration with physics-informed data assimilation and spectral nudging , 2018, Physical Review Fluids.

[49]  Jinlong Wu,et al.  Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework , 2018, Physical Review Fluids.

[50]  A. Alexakis,et al.  Condensates in rotating turbulent flows , 2017, Journal of Fluid Mechanics.

[51]  Luca Biferale,et al.  Energy transfer in turbulence under rotation. , 2017, 1711.07054.

[52]  Antonio Celani,et al.  Flow Navigation by Smart Microswimmers via Reinforcement Learning , 2017, Physical review letters.

[53]  I. Mazzitelli,et al.  Coherent Structures and Extreme Events in Rotating Multiphase Turbulent Flows , 2016, Physical Review X.

[54]  Gautam Reddy,et al.  Learning to soar in turbulent environments , 2016, Proceedings of the National Academy of Sciences.

[55]  Yuan Yu,et al.  TensorFlow: A system for large-scale machine learning , 2016, OSDI.

[56]  Alexei A. Efros,et al.  Context Encoders: Feature Learning by Inpainting , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[57]  Timothy Dozat,et al.  Incorporating Nesterov Momentum into Adam , 2016 .

[58]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[59]  S. Brunton,et al.  Discovering governing equations from data by sparse identification of nonlinear dynamical systems , 2015, Proceedings of the National Academy of Sciences.

[60]  Ali Farhadi,et al.  You Only Look Once: Unified, Real-Time Object Detection , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[61]  Katepalli R Sreenivasan,et al.  Extreme events in computational turbulence , 2015, Proceedings of the National Academy of Sciences.

[62]  P. Mininni,et al.  The spatio-temporal spectrum of turbulent flows , 2015, The European physical journal. E, Soft matter.

[63]  J. Templeton Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty , 2015 .

[64]  P. Mininni,et al.  Large-scale anisotropy in stably stratified rotating flows. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[65]  Takemasa Miyoshi,et al.  Estimating Model Parameters with Ensemble-Based Data Assimilation: A Review , 2013 .

[66]  P. Mininni,et al.  Inverse cascades in rotating stratified turbulence: Fast growth of large scales , 2013 .

[67]  F. Toschi,et al.  Extreme events in the dispersions of two neighboring particles under the influence of fluid turbulence. , 2012, Physical review letters.

[68]  B. Efron A 250-year argument: Belief, behavior, and the bootstrap , 2012 .

[69]  Hujun Bao,et al.  Laplacian Regularized Gaussian Mixture Model for Data Clustering , 2011, IEEE Transactions on Knowledge and Data Engineering.

[70]  P. Mininni,et al.  Helicity cascades in rotating turbulence. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[71]  Douglas A. Reynolds,et al.  Gaussian Mixture Models , 2018, Encyclopedia of Biometrics.

[72]  Michael Ghil,et al.  Data assimilation as a nonlinear dynamical systems problem: stability and convergence of the prediction-assimilation system. , 2007, Chaos.

[73]  G. Vallis Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation , 2017 .

[74]  Eugenia Kalnay,et al.  Atmospheric Modeling, Data Assimilation and Predictability , 2002 .

[75]  Ian F. Akyildiz,et al.  Wireless sensor networks: a survey , 2002, Comput. Networks.

[76]  Carl E. Rasmussen,et al.  The Infinite Gaussian Mixture Model , 1999, NIPS.

[77]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[78]  Leslie M. Smith,et al.  Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence , 1999 .

[79]  Ionel M. Navon,et al.  An Optimal Nudging Data Assimilation Scheme Using Parameter Estimation , 1992 .

[80]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[81]  J. Holton Geophysical fluid dynamics. , 1983, Science.