Stress-strength reliability of Weibull distribution based on progressively censored samples

Based on progressively Type-II censored samples, this paper deals with inference for the stress-strength reliability R = P(Y < X) when X and Y are two independent Weibull distributions with different scale parameters, but having the same shape parameter. The maximum likelihood estimator, and the approximate maximum likelihood estimator of R are obtained. Different confidence intervals are presented. The Bayes estimator of R and the corresponding credible interval using the Gibbs sampling technique are also proposed. Further, we consider the estimation of R when the same shape parameter is known. The results for exponential and Rayleigh distributions can be obtained as special cases with different scale parameters. Analysis of a real data set as well a Monte Carlo simulation have been presented for illustrative purposes.

[1]  R. G. Krutchkoff,et al.  Empirical Bayes Estimation , 1972 .

[2]  Richard E. Barlow,et al.  Statistical Analysis of Reliability and Life Testing Models , 1975 .

[3]  D. Bamber The area above the ordinal dominance graph and the area below the receiver operating characteristic graph , 1975 .

[4]  D. Lindley,et al.  Approximate Bayesian methods , 1980 .

[5]  Adnan M. Awad,et al.  Some inference results on pr(x < y) in the bivariate exponential model , 1981 .

[6]  P. Hall Theoretical Comparison of Bootstrap Confidence Intervals , 1988 .

[7]  James O. Berger,et al.  Bayesian Analysis for the Poly-Weibull Distribution , 1993 .

[8]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[9]  Z. F. Jaheen,et al.  Empirical Bayes estimation of P(Y < X) and characterizations of Burr-type X model , 1997 .

[10]  Ming-Hui Chen,et al.  Monte Carlo Estimation of Bayesian Credible and HPD Intervals , 1999 .

[11]  N. Balakrishnan,et al.  Progressive Censoring: Theory, Methods, and Applications , 2000 .

[12]  Udo Kamps,et al.  On distributions Of generalized order statistics , 2001 .

[13]  S. Kotz,et al.  The stress-strength model and its generalizations : theory and applications , 2003 .

[14]  Debasis Kundu,et al.  Estimation of P[Y < X] for generalized exponential distribution , 2005 .

[15]  Debasis Kundu,et al.  Comparison of Different Estimators of P [Y < X] for a Scaled Burr Type X Distribution , 2005 .

[16]  Monica Chiogna,et al.  Partially parametric interval estimation of $Pr\{Y>X\}$ , 2006, Comput. Stat. Data Anal..

[17]  Debasis Kundu,et al.  Estimation of P[Y, 2006, IEEE Transactions on Reliability.

[18]  Ayman Baklizi Likelihood and Bayesian estimation of I using lower record values from the generalized exponential distribution , 2008, Comput. Stat. Data Anal..

[19]  D. Kundu,et al.  Estimation of P(Y < X) for the Three-Parameter Generalized Exponential Distribution , 2008 .

[20]  Debasis Kundu,et al.  Estimation of R = P ( Y < X ) for three-parameter Weibull distribution , 2009 .

[21]  D. Kundu,et al.  Estimation of R=P(Y, 2009 .

[22]  Sadegh Rezaei,et al.  Estimation of P[Y, 2010 .