Pump Hydro Storage and Gas Turbines Technologies Combined to Handle Wind Variability: Optimal Hydro Solution for an Italian Case Study☆

Abstract Load and wind energy profiles are totally uncorrelated, therein lies the problem of variable energy sources. Managing load with increasing wind penetration may call for operational ranges that conventional systems cannot readily access. Storage technologies could allow tolerating the unsteadiness of renewable sources with smaller fossil fuel plants capacity. Pumped Hydro Storage (PHS) is a crucial technology for balancing large steam power plants and may become increasingly important for storing renewable energies. Hence capacity ranges of PHS as well as its dynamic response to renewable power variability, will become progressively relevant. An integrated system made of a wind farm, a PHS plant and a set of gas turbines (GTs), as programmable fossil fuel devices, to handle renewable variability and maximize renewable energy exploitation, is studied in this paper. A specific case study is analyzed: a wind farm with a nameplate capacity equal to that installed in Sardinia is considered. To match the power output requested by the region with the integrated systems different configurations of PHS plant will be investigated. The impact of reversible or separate Francis machines with constant or variable speed will be analyzed in order to minimize electric power output overproduction and GTs fuel consumptions. Minimum and maximum capacity range for reversible or separate machines will be considered. The aim of the study is the optimum sizing and design of a PHS unit in a hybrid wind-hydro-gas turbine power plant to match the load request. Results in terms of PHS operation, water height behavior in upper and lower reservoirs, GT units power output, natural gas consumed and electric power output overproduction will be presented for each analyzed case.