High-confinement gallium nitride-on-sapphire waveguides for integrated nonlinear photonics.

We demonstrate a highly effective nonlinearity of 7.3  W-1 m-1 in a high-confinement gallium nitride-on-sapphire waveguide by performing four-wave mixing characterization at telecom wavelengths. Benefitting from a high-index-contrast waveguide layout, we can engineer the device dispersion efficiently and achieve broadband four-wave mixing operation over more than 100 nm. The intrinsic material nonlinearity of gallium nitride is extracted. Furthermore, we fabricate microring resonators with quality factors above 100,000, which will be promising for various nonlinear applications.

[1]  F. Payne,et al.  A theoretical analysis of scattering loss from planar optical waveguides , 1994 .

[2]  E. Semenova,et al.  AlGaAs-On-Insulator Nonlinear Photonics , 2015, 1509.03620.

[3]  Hong X. Tang,et al.  Aluminum nitride as nonlinear optical material for on-chip frequency comb generation and frequency conversion , 2016 .

[4]  Leif Katsuo Oxenløwe,et al.  Ultra-Efficient and Broadband Nonlinear AlGaAs-on-Insulator Chip , 2018, 2019 Asia Communications and Photonics Conference (ACP).

[5]  O. Painter,et al.  Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment. , 2005, Optics express.

[6]  F. Ren,et al.  New applications advisable for gallium nitride , 2002 .

[7]  Minhao Pu,et al.  High-Quality-Factor AlGaAs-on-Sapphire Microring Resonators , 2019, Journal of Lightwave Technology.

[8]  Wolfram Pernice,et al.  Integrated GaN photonic circuits on silicon (100) for second harmonic generation. , 2011, Optics express.

[9]  Hao Hu,et al.  Polarization insensitive wavelength conversion in a dispersion-engineered silicon waveguide , 2012 .

[10]  J. Leuthold,et al.  Nonlinear silicon photonics , 2010 .

[11]  Paulina S. Kuo,et al.  Second-harmonic generation using -quasi-phasematching in a GaAs whispering-gallery-mode microcavity , 2014, Nature Communications.

[12]  M. Larciprete,et al.  Measurement of pure Kerr nonlinearity in GaN thin films at 800 nm by means of eclipsing Z-scan experiments , 2007 .

[13]  H. Tang,et al.  Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency , 2016 .

[14]  D. T. H. Tan,et al.  Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge , 2017, Nature Communications.

[15]  K. Hane,et al.  Asymmetrically and Vertically Coupled Hybrid Si/GaN Microring Resonators for On-Chip Optical Interconnects , 2015, IEEE Photonics Journal.

[16]  T. Tsuchizawa,et al.  Four-wave mixing in silicon wire waveguides. , 2005, Optics express.

[17]  K. Yvind,et al.  Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide , 2010 .

[19]  A. Zadok,et al.  Four-wave mixing and nonlinear parameter measurement in a gallium-nitride ridge waveguide , 2018, 1811.06676.

[20]  H. Chen,et al.  Low loss GaN waveguides at the visible spectral wavelengths for integrated photonics applications. , 2017, Optics express.

[21]  E. Semenova,et al.  Low-loss high-confinement waveguides and microring resonators in AlGaAs-on-insulator. , 2016, Optics letters.

[22]  Y. Fainman,et al.  Effect of dielectric interfaces on second-harmonic generation in integrated GaN resonators , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[23]  Hao Hu,et al.  15-THz Tunable Wavelength Conversion of Picosecond Pulses in a Silicon Waveguide , 2011, IEEE Photonics Technology Letters.

[24]  E. Semenova,et al.  Efficient frequency comb generation in AlGaAs-on-insulator , 2016 .

[25]  C. Xiong,et al.  Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films , 2015 .

[26]  R. Morandotti,et al.  New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics , 2013, Nature Photonics.

[27]  S. O. Usov,et al.  Dependence of the efficiency of III-N blue LEDs on the structural perfection of GaN epitaxial buffer layers , 2014 .

[28]  Kanglin Xiong,et al.  Electrochemically sliced low loss AlGaN optical microresonators , 2017 .