On primitivity and reduction for flag-transitive symmetric designs

We present some results on flag-transitive symmetric designs. First we see what conditions are necessary for a symmetric design to admit an imprimitive, flag-transitive automorphism group. Then we move on to study the possibilities for a primitive, flag-transitive automorphism group, and prove that for λ ≤ 3, the group must be affine or almost simple, and finally we analyse the case in which a biplane admits a primitive, flag-transitive automorphism group of affine type.

[1]  Marshall Hall,et al.  Designs derived from permutation groups , 1970 .

[2]  Chester J. Salwach,et al.  Planes and Biplanes , 1977 .

[3]  Eugenia O'Reilly Regueiro Flag-transitive symmetric designs , 2003 .

[4]  Order 4 elements of linear and collineation groups , 2003 .

[5]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.

[6]  S. Lang Algebraic Number Theory , 1971 .

[7]  Martin W. Liebeck,et al.  The Classification of Finite Linear Spaces with Flag-Transitive Automorphism Groups of Affine Type , 1998, J. Comb. Theory, Ser. A.

[8]  I. Anderson Combinatorial Designs: Construction Methods , 1990 .

[9]  G. Winskel What Is Discrete Mathematics , 2007 .

[10]  J. Neukirch Algebraic Number Theory , 1999 .

[11]  Cheryl E. Praeger,et al.  On the O'Nan-Scott theorem for finite primitive permutation groups , 1988, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[12]  Chester J. Salwach,et al.  The Four Biplanes with k = 9 , 1978, J. Comb. Theory, Ser. A.

[13]  Huw Davies Flag-transitivity and primitivity , 1987, Discret. Math..

[14]  D. G. Higman,et al.  Geometric $ABA$-groups , 1961 .

[15]  Aart Blokhuis,et al.  Finite Geometries , 2018, Des. Codes Cryptogr..

[16]  Michael Aschbacher,et al.  On Collineation Groups of Symmetric Block Designs , 1971, J. Comb. Theory, Ser. A.

[17]  J. D. Key,et al.  Geometry, Combinatorial Designs and Related Structures: Computational results for the known biplanes of order 9 , 1997 .

[18]  J. Müller,et al.  Group Theory , 2019, Computers, Rigidity, and Moduli.

[19]  H. B. Mann Difference sets in elementary abelian groups , 1965 .

[20]  C. Ho Finite Projective Planes with Abelian Transitive Collineation Groups , 1998 .

[21]  W. Kantor Primitive permutation groups of odd degree, and an application to finite projective planes , 1987 .

[22]  M P SCHUTZENBERGER,et al.  A non-existence theorem for an infinite family of symmetrical block designs. , 1949, Annals of eugenics.

[23]  E. Lander Symmetric Designs: An Algebraic Approach , 1983 .

[24]  F. Buekenhout,et al.  Finite linear spaces with flag-transitive groups , 1988, J. Comb. Theory A.

[25]  Eugenia O'Reilly Regueiro Biplanes with flag-transitive automorphism groups of almost simple type, with alternating or sporadic socle , 2005, Eur. J. Comb..

[26]  A non-existence theorem for an infinite family of symmetrical block designs. , 1947 .

[27]  H. Weyl Permutation Groups , 2022 .

[28]  William M. Kantor,et al.  Automorphism groups of designs , 1969 .

[29]  Martin W. Liebeck,et al.  The Primitive Permutation Groups of Odd Degree , 1985 .

[30]  Rudolf Mathon,et al.  On 2-(45, 12, 3) designs , 1996 .

[31]  C. Ho Collineation groups with perspectivities , 2004 .

[32]  Eugenia O’Reilly-Regueiro Biplanes with flag-transitive automorphism groups of almost simple type, with classical socle , 2007 .

[33]  William M. Kantor,et al.  Classification of 2-transitive symmetric designs , 1985, Graphs Comb..

[34]  P. B. Kleidman,et al.  Linear spaces with flag-transitive automophism groups , 1990 .

[35]  Linear groups and collineation groups of translation planes , 2002 .