On primitivity and reduction for flag-transitive symmetric designs
暂无分享,去创建一个
[1] Marshall Hall,et al. Designs derived from permutation groups , 1970 .
[2] Chester J. Salwach,et al. Planes and Biplanes , 1977 .
[3] Eugenia O'Reilly Regueiro. Flag-transitive symmetric designs , 2003 .
[4] Order 4 elements of linear and collineation groups , 2003 .
[5] C. Colbourn,et al. The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.
[6] S. Lang. Algebraic Number Theory , 1971 .
[7] Martin W. Liebeck,et al. The Classification of Finite Linear Spaces with Flag-Transitive Automorphism Groups of Affine Type , 1998, J. Comb. Theory, Ser. A.
[8] I. Anderson. Combinatorial Designs: Construction Methods , 1990 .
[9] G. Winskel. What Is Discrete Mathematics , 2007 .
[10] J. Neukirch. Algebraic Number Theory , 1999 .
[11] Cheryl E. Praeger,et al. On the O'Nan-Scott theorem for finite primitive permutation groups , 1988, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.
[12] Chester J. Salwach,et al. The Four Biplanes with k = 9 , 1978, J. Comb. Theory, Ser. A.
[13] Huw Davies. Flag-transitivity and primitivity , 1987, Discret. Math..
[14] D. G. Higman,et al. Geometric $ABA$-groups , 1961 .
[15] Aart Blokhuis,et al. Finite Geometries , 2018, Des. Codes Cryptogr..
[16] Michael Aschbacher,et al. On Collineation Groups of Symmetric Block Designs , 1971, J. Comb. Theory, Ser. A.
[17] J. D. Key,et al. Geometry, Combinatorial Designs and Related Structures: Computational results for the known biplanes of order 9 , 1997 .
[18] J. Müller,et al. Group Theory , 2019, Computers, Rigidity, and Moduli.
[19] H. B. Mann. Difference sets in elementary abelian groups , 1965 .
[20] C. Ho. Finite Projective Planes with Abelian Transitive Collineation Groups , 1998 .
[21] W. Kantor. Primitive permutation groups of odd degree, and an application to finite projective planes , 1987 .
[22] M P SCHUTZENBERGER,et al. A non-existence theorem for an infinite family of symmetrical block designs. , 1949, Annals of eugenics.
[23] E. Lander. Symmetric Designs: An Algebraic Approach , 1983 .
[24] F. Buekenhout,et al. Finite linear spaces with flag-transitive groups , 1988, J. Comb. Theory A.
[25] Eugenia O'Reilly Regueiro. Biplanes with flag-transitive automorphism groups of almost simple type, with alternating or sporadic socle , 2005, Eur. J. Comb..
[26] A non-existence theorem for an infinite family of symmetrical block designs. , 1947 .
[27] H. Weyl. Permutation Groups , 2022 .
[28] William M. Kantor,et al. Automorphism groups of designs , 1969 .
[29] Martin W. Liebeck,et al. The Primitive Permutation Groups of Odd Degree , 1985 .
[30] Rudolf Mathon,et al. On 2-(45, 12, 3) designs , 1996 .
[31] C. Ho. Collineation groups with perspectivities , 2004 .
[32] Eugenia O’Reilly-Regueiro. Biplanes with flag-transitive automorphism groups of almost simple type, with classical socle , 2007 .
[33] William M. Kantor,et al. Classification of 2-transitive symmetric designs , 1985, Graphs Comb..
[34] P. B. Kleidman,et al. Linear spaces with flag-transitive automophism groups , 1990 .
[35] Linear groups and collineation groups of translation planes , 2002 .