Realization theory of infinite-dimensional linear systems. Part II

This paper studies the real-time behavior of constant linear systems. A function space Λ is introduced to give a precise language to discuss the working mode of systems. It is shown that a realization of a constant linear input/output map produces the desired outputs during the application of inputs. A differential equation description is derived for those systems whose weighting patterns are sufficiently smooth. The notion of topological observability in bounded time yields a necessary and sufficient condition under which the canonical realization of a constant linear input/output map has a Banach state space.

[1]  Takako Kōmura Semigroups of operators in locally convex spaces , 1968 .

[2]  Roberto Triggiani,et al.  Extensions of Rank Conditions for Controllability and Observability to Banach Spaces and Unbounded Operators , 1976 .

[3]  Tsuyoshi Matsuo Realization theory of continuous-time dynamical systems , 1981 .

[4]  J. William Helton,et al.  Systems with infinite dimensional state space: The Hilbert space approach , 1976 .

[5]  Hans Jarchow,et al.  Topological Vector Spaces , 1981 .

[6]  R. Brockett,et al.  State-space models for infinite-dimensional systems , 1974 .

[7]  Paul A. Fuhrmann,et al.  On realization of linear systems and applications to some questions of stability , 1974, Mathematical systems theory.

[8]  M. Landsberg,et al.  E. Hewitt and K. Stromberg, Real and Abstract Analysis. VIII + 476 S. m. 8 Abb. Berlin/Heidelberg/New York 1965. Springer-Verlag. Preis geb. DM 38,— , 1966 .

[9]  M. Heymann,et al.  Linear Feedback—An Algebraic Approach , 1978 .

[10]  Edward W. Kamen,et al.  On an algebraic theory of systems defined by convolution operators , 1975, Mathematical systems theory.

[11]  Michael A. Arbib,et al.  Topics in Mathematical System Theory , 1969 .

[12]  Edward W. Kamen,et al.  Module Structure of Infinite-Dimensional Systems with Applications to Controllability , 1976 .

[13]  Yukata Yamamoto,et al.  Realization theory of infinite-dimensional linear systems. Part I , 2005, Mathematical systems theory.

[14]  Edwin Hewitt,et al.  Real And Abstract Analysis , 1967 .

[15]  H. H. Schaefer,et al.  Topological Vector Spaces , 1967 .

[16]  F. Trèves Topological vector spaces, distributions and kernels , 1967 .

[17]  Sigeru Mizohata The Theory of Partial Differential Equations , 1973 .

[18]  R. E. Kalman,et al.  REALIZATION OF CONTINUOUS-TIME LINEAR DYNAMICAL SYSTEMS: RIGOROUS THEORY IN THE STYLE OF SCHWARTZ , 1972 .

[19]  L. Schwartz Théorie des distributions , 1966 .

[20]  S. Mitter,et al.  Representation Theory for Linear Infinite Dimensional Continuous Time Systems , 1976 .

[21]  J. Dieudonne Treatise on Analysis , 1969 .

[22]  Roger W. Brockett,et al.  Normal Symmetric Dynamical Systems , 1976 .

[23]  R. Brockett,et al.  $H^2 $-Functions and Infinite-Dimensional Realization Theory , 1975 .

[24]  J. William Helton,et al.  Discrete time systems, operator models, and scattering theory , 1974 .

[25]  Eduardo Sontag,et al.  On discrete-time polynomial systems , 1976 .