Voigt profile introduces optical depth dependent systematic errors - Detected in high resolution laboratory spectra of water
暂无分享,去创建一个
[1] J. Cooper,et al. CORRELATION EFFECTS IN THE THEORY OF COMBINED DOPPLER AND PRESSURE BROADENING-I. CLASSICAL THEORY* , 1974 .
[2] Peter F. Bernath,et al. Speed-dependent Voigt profile for water vapor in infrared remote sensing applications , 2007 .
[3] J. J. Olivero,et al. Empirical fits to the Voigt line width: A brief review , 1977 .
[4] D. Kratz. The sensitivity of radiative transfer calculations to the changes in the HITRAN database from 1982 to 2004 , 2008 .
[5] Luis Kornblueh,et al. The atmospheric general circulation model ECHAM5 Part II: Sensitivity of simulated climate to horizontal and vertical resolution , 2004 .
[6] F. X. Kneizys,et al. Atmospheric radiance and transmittance - FASCOD2 , 1986 .
[7] F. X. Kneizys,et al. AFGL atmospheric constituent profiles (0-120km) , 1986 .
[8] Peter F. Bernath,et al. Atmospheric chemistry experiment (ACE): mission overview , 2004, SPIE Optics + Photonics.
[9] J. Hodges,et al. Spectroscopic line parameters of water vapor for rotation-vibration transitions near 7180 cm − 1 , 2009 .
[10] W. J. Lafferty,et al. The H216O molecule : Line position and line intensity analyses up to the second triad , 2008 .
[11] Martyn P. Chipperfield,et al. Hydrogen fluoride total and partial column time series above the Jungfraujoch from long-term FTIR measurements: Impact of the line-shape model, characterization of the error budget and seasonal cycle, and comparison with satellite and model data , 2010 .
[12] I. V. Ptashnik,et al. Laboratory measurements of the water vapor continuum in the 1200–8000 cm−1 region between 293 K and 351 K , 2009 .
[13] Franz Schreier,et al. The GEISA spectroscopic database: Current and future archive for Earth and planetary atmosphere studies , 2008 .
[14] EUMETSAT Am Kavalleriesand,et al. THE OPERATIONAL IASI LEVEL 2 PROCESSOR , 2003 .
[15] J. Hartmann,et al. Pressure effects on water vapour lines: beyond the Voigt profile , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[16] Luca Bonaventura,et al. The atmospheric general circulation model ECHAM 5. PART I: Model description , 2003 .
[17] F. X. Kneizys,et al. Line shape and the water vapor continuum , 1989 .
[18] E. R. Polovtseva,et al. The HITRAN2012 molecular spectroscopic database , 2013 .
[19] E. Mahieu,et al. Line narrowing effect on the retrieval of HF and HCl vertical profiles from ground-based FTIR measurements , 2005 .
[20] Jonathan Tennyson,et al. Comparison between theoretical calculations and high-resolution measurements of pressure broadening for near-infrared water spectra , 2008 .
[21] T. Clarmann,et al. MIPAS: an instrument for atmospheric and climate research , 2007 .
[22] M. Birk,et al. Temperature-dependent air broadening of water in the 1250–1750 cm−1 range , 2012 .
[23] R. Ciuryło. SHAPES OF PRESSURE- AND DOPPLER-BROADENED SPECTRAL LINES IN THE CORE AND NEAR WINGS , 1998 .
[24] R. Dicke. The effect of collisions upon the Doppler width of spectral lines , 1953 .
[25] Matthias Schneider,et al. Improving spectroscopic line parameters by means of atmospheric spectra: Theory and example for water vapor and solar absorption spectra , 2009 .
[26] Paul R. Berman,et al. Speed-dependent collisional width and shift parameters in spectral profiles , 1972 .
[27] Gang Li,et al. The HITRAN 2008 molecular spectroscopic database , 2005 .
[28] V. Malathy Devi,et al. Spectroscopic challenges for high accuracy retrievals of atmospheric CO2 and the Orbiting Carbon Observatory (OCO) experiment , 2005 .