Self-adaptive Differential Evolution Using Chaotic Local Search for Solving Power Economic Dispatch with Nonsmooth Fuel Cost Function

The differential evolution (DE), proposed by Storn and Price, is a powerful population-based algorithm of evolutionary computation field designed for solving global optimization problems. The advantages of DE are its simple structure, easy use, convergence speed and robustness. However, the control parameters and learning strategies involved in DE are highly dependent on the problems under consideration. Choosing suitable parameter values requires also previous experience of the user. Despite its crucial importance, there is no consistent methodology for determining the control parameters of DE. In this chapter, different differential evolution approaches with self-adaptive mutation factor combined with a chaotic local search technique are proposed as alternative methods to solve the economic load dispatch problem of thermal units with valve-point effect. DE is used to produce good potential solutions, and the chaotic local search is used to fine-tune the DE run. DE and its variants with chaotic local search are validated for a test system consisting of 13 thermal units whose nonsmooth fuel cost function takes into account the valve-point loading effects. Numerical results indicate that performance of DE with chaotic local search presents best results when compared with previous optimization approaches in solving the load dispatch problem with the valve-point effect.

[1]  A. K. Al-Othman,et al.  Application of pattern search method to power system security constrained economic dispatch with non-smooth cost function , 2007 .

[2]  Y. W. Wong,et al.  Thermal generator scheduling using hybrid genetic/simulated-annealing approach , 1995 .

[3]  G. Sheblé,et al.  Genetic algorithm solution of economic dispatch with valve point loading , 1993 .

[4]  Fawaz S. Al-Anzi,et al.  A self-adaptive differential evolution heuristic for two-stage assembly scheduling problem to minimize maximum lateness with setup times , 2007, Eur. J. Oper. Res..

[5]  Y. W. Wong,et al.  Genetic and genetic/simulated-annealing approaches to economic dispatch , 1994 .

[6]  Xiangdong Wang,et al.  Parameters identification of chaotic systems via chaotic ant swarm , 2006 .

[7]  Luigi Fortuna,et al.  Chaotic sequences to improve the performance of evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[8]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[9]  M. Hénon,et al.  A two-dimensional mapping with a strange attractor , 1976 .

[10]  Xuefeng F. Yan,et al.  Chaos-genetic algorithms for optimizing the operating conditions based on RBF-PLS model , 2003, Comput. Chem. Eng..

[11]  Allen J. Wood,et al.  Power Generation, Operation, and Control , 1984 .

[12]  T. Sum-im Economic dispatch by ant colony search algorithm , 2004, IEEE Conference on Cybernetics and Intelligent Systems, 2004..

[13]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[14]  A. Ebenezer Jeyakumar,et al.  Hybrid PSO–SQP for economic dispatch with valve-point effect , 2004 .

[15]  L. Coelho,et al.  Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect , 2006, IEEE Transactions on Power Systems.

[16]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[17]  Ling Wang,et al.  Chaotic annealing with hypothesis test for function optimization in noisy environments , 2008 .

[18]  Osvaldo R. Saavedra,et al.  A Cauchy-based evolution strategy for solving the reactive power dispatch problem , 2002 .

[19]  Shinn-Ying Ho,et al.  Optimizing fuzzy neural networks for tuning PID controllers using an orthogonal simulated annealing algorithm OSA , 2006, IEEE Transactions on Fuzzy Systems.

[20]  Joong-Rin Shin,et al.  A particle swarm optimization for economic dispatch with nonsmooth cost functions , 2005, IEEE Transactions on Power Systems.

[21]  P. K. Chattopadhyay,et al.  Evolutionary programming techniques for economic load dispatch , 2003, IEEE Trans. Evol. Comput..

[22]  Chao-Lung Chiang,et al.  Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels , 2005 .

[23]  Carlos A. Coello Coello,et al.  A comparative study of differential evolution variants for global optimization , 2006, GECCO.