Actinide-transition metal bonding in heterobimetallic uranium- and thorium-molybdenum paddlewheel complexes.

We report the preparation of four heterobimetallic uranium- and thorium-molybdenum paddlewheel complexes. The characterisation data suggest the presence of Mo → An σ-interactions in all cases. These complexes represent unprecedented actinide-group 6 metal-metal bonds, where before heterobimetallic uranium-metal bonds were restricted to group 7-11 metals.

[1]  Erli Lu,et al.  A Very Short Uranium(IV)–Rhodium(I) Bond with Net Double‐Dative Bonding Character , 2018, Angewandte Chemie.

[2]  C. de Graaf,et al.  U2@ I h(7)-C80: Crystallographic Characterization of a Long-Sought Dimetallic Actinide Endohedral Fullerene. , 2018, Journal of the American Chemical Society.

[3]  F. Tuna,et al.  Actinide–Pnictide (An−Pn) Bonds Spanning Non‐Metal, Metalloid, and Metal Combinations (An=U, Th; Pn=P, As, Sb, Bi) , 2017, Angewandte Chemie.

[4]  D. Dickie,et al.  Investigation of Ketone C═O Bond Activation Processes by Heterobimetallic Zr/Co and Ti/Co Tris(phosphinoamide) Complexes , 2017 .

[5]  Bess Vlaisavljevich,et al.  An N-Tethered Uranium(III) Arene Complex and the Synthesis of an Unsupported U–Fe Bond , 2017 .

[6]  Han-Shi Hu,et al.  The shortest Th-Th distance from a new type of quadruple bond. , 2017, Physical chemistry chemical physics : PCCP.

[7]  J. Love,et al.  Uranium rhodium bonding in heterometallic complexes† †Electronic supplementary information (ESI) available. CCDC 1519919–1519921. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6dt04570g Click here for additional data file. Click here for additional data file. , 2017, Dalton transactions.

[8]  Marc D. Walter,et al.  Experimental and Computational Studies on the Formation of Thorium-Copper Heterobimetallics. , 2016, Chemistry.

[9]  Ping Yang,et al.  Extending Stannyl Anion Chemistry to the Actinides: Synthesis and Characterization of a Uranium-Tin Bond. , 2016, Inorganic chemistry.

[10]  P. Arnold,et al.  Metal–Metal Bonding in Uranium–Group 10 Complexes , 2016, Journal of the American Chemical Society.

[11]  R. Kempe,et al.  Rare earth–metal bonding in molecular compounds: recent advances, challenges, and perspectives , 2015 .

[12]  S. Liddle The Renaissance of Non-Aqueous Uranium Chemistry. , 2015, Angewandte Chemie.

[13]  S. Liddle,et al.  Uranium triamidoamine chemistry. , 2015, Chemical communications.

[14]  P. Pyykkö Additive covalent radii for single-, double-, and triple-bonded molecules and tetrahedrally bonded crystals: a summary. , 2015, The journal of physical chemistry. A.

[15]  Ian D. Williams,et al.  Rearrangement of Metallabenzynes to Chlorocyclopentadienyl Complexes , 2015 .

[16]  M. Bezpalko,et al.  Probing substituent effects in phosphinoamine ligands using Mo(CO) 5 L complexes , 2015 .

[17]  A. J. Blake,et al.  Thorium Triamidoamine Complexes: Synthesis of an Unusual Dinuclear Tuck-in–Tuck-over Thorium Metallacycle Featuring the Longest Known Thorium−σ-Alkyl Bond , 2015 .

[18]  Xing Lu,et al.  Hiding and recovering electrons in a dimetallic endohedral fullerene: air-stable products from radical additions. , 2015, Journal of the American Chemical Society.

[19]  W. Evans,et al.  Magnetic susceptibility of uranium complexes. , 2014, Chemical reviews.

[20]  A. J. Blake,et al.  The Ketimide Ligand is Not Just an Inert Spectator: Heteroallene Insertion Reactivity of an Actinide–Ketimide Linkage in a Thorium Carbene Amide Ketimide Complex** , 2014, Angewandte Chemie.

[21]  A. J. Blake,et al.  The role of 5f-orbital participation in unexpected inversion of the σ-bond metathesis reactivity trend of triamidoamine thorium(IV) and uranium(IV) alkyls , 2014 .

[22]  Ashleigh L. Ward,et al.  Photochemical route to actinide-transition metal bonds: synthesis, characterization and reactivity of a series of thorium and uranium heterobimetallic complexes. , 2014, Journal of the American Chemical Society.

[23]  P. Fanwick,et al.  Tris(phosphinoamide)-supported uranium-cobalt heterobimetallic complexes featuring Co → U dative interactions. , 2013, Inorganic chemistry.

[24]  Trevor W. Hayton,et al.  Recent developments in actinide-ligand multiple bonding. , 2013, Chemical communications.

[25]  A. Gaunt,et al.  Recent developments in synthesis and structural chemistry of nonaqueous actinide complexes. , 2013, Chemical reviews.

[26]  R. Kempe,et al.  f-Element-metal bonding and the use of the bond polarity to build molecular intermetalloids. , 2012, Chemistry.

[27]  S. Liddle,et al.  f-Element-metal bond chemistry , 2012 .

[28]  A. J. Blake,et al.  A formal high oxidation state inverse-sandwich diuranium complex: a new route to f-block-metal bonds. , 2011, Angewandte Chemie.

[29]  A. J. Blake,et al.  The nature of unsupported uranium-ruthenium bonds: a combined experimental and theoretical study. , 2011, Chemistry.

[30]  B. Foxman,et al.  Activation of CO2 by a heterobimetallic Zr/Co complex. , 2011, Journal of the American Chemical Society.

[31]  Marisa J. Monreal,et al.  Molecular quadrangle formation from a diuranium μ-η6,η6-toluene complex. , 2011, Chemical Communications.

[32]  C. Cramer,et al.  On the nature of actinide- and lanthanide-metal bonds in heterobimetallic compounds. , 2011, Chemistry.

[33]  Guang Wu,et al.  High-valent uranium alkyls: evidence for the formation of U(VI)(CH2SiMe3)6. , 2011, Journal of the American Chemical Society.

[34]  A. J. Blake,et al.  An unsupported uranium-rhenium complex prepared by alkane elimination. , 2011, Chemistry.

[35]  A. J. Blake,et al.  Structural and theoretical insights into the perturbation of uranium-rhenium bonds by dative Lewis base ancillary ligands. , 2011, Chemical communications.

[36]  Christine M. Thomas METAL-METAL MULTIPLE BONDS IN EARLY/LATE HETEROBIMETALLIC COMPLEXES: APPLICATIONS TOWARD SMALL MOLECULE ACTIVATION AND CATALYSIS , 2011 .

[37]  Trevor W. Hayton,et al.  Metal-ligand multiple bonding in uranium: structure and reactivity. , 2010, Dalton transactions.

[38]  T. Tyliszczak,et al.  A comparison of 4f vs 5f metal-metal bonds in (CpSiMe3)3M-ECp* (M = Nd, U; E = Al, Ga; Cp* = C5Me5): synthesis, thermodynamics, magnetism, and electronic structure. , 2009, Journal of the American Chemical Society.

[39]  S. Liddle,et al.  Metal-metal bonds in f-element chemistry. , 2009, Dalton transactions.

[40]  B. Foxman,et al.  Multielectron redox activity facilitated by metal-metal interactions in early/late heterobimetallics: Co/Zr complexes supported by phosphinoamide ligands. , 2009, Inorganic chemistry.

[41]  W. Lewis,et al.  Synthesis and structure of [{N(CH2CH2NSiMe3)3}URe(eta5-C5H5)2]: a heterobimetallic complex with an unsupported uranium-rhenium bond. , 2009, Chemical communications.

[42]  A. J. Blake,et al.  Sigma and pi donation in an unsupported uranium-gallium bond. , 2009, Angewandte Chemie.

[43]  S. Minasian,et al.  A heterobimetallic complex with an unsupported uranium(III)-aluminum(I) bond: (CpSiMe3)3U-AlCp* (Cp* = C5Me5). , 2008, Journal of the American Chemical Society.

[44]  H. Nagashima,et al.  Zirconium(IV) Tris(phosphinoamide) Complexes as a Tripodal‐Type Metalloligand: A Route to Zr–M (M = Cu, Mo, Pt) Heterodimetallic Complexes , 2007 .

[45]  R. Lindh,et al.  A combined experimental and theoretical study of uranium polyhydrides with new evidence for the large complex UH4(H2)6. , 2007, The journal of physical chemistry. A.

[46]  Xin Wu,et al.  Dimetalloendofullerene U(2)@C(60) has a U-U multiple bond consisting of sixfold one-electron-two-center bonds. , 2007, Journal of the American Chemical Society.

[47]  B. Roos,et al.  Exploring the actinide-actinide bond: theoretical studies of the chemical bond in Ac2, Th2, Pa2, and U2. , 2006, Journal of the American Chemical Society.

[48]  N. Kaltsoyannis,et al.  Metal-metal bonding in molecular actinide compounds: electronic structure of [M2X8](2-) (M = U, Np, Pu; X = Cl, Br, I) complexes and comparison with d-block analogues. , 2006, Dalton transactions.

[49]  L. Gagliardi,et al.  Quantum chemical calculations predict the diphenyl diuranium compound [PhUUPh] to have a stable 1Ag ground state. , 2006, Angewandte Chemie.

[50]  N. Kaltsoyannis,et al.  On the paucity of molecular actinide complexes with unsupported metal-metal bonds: a comparative investigation of the electronic structure and metal-metal bonding in U2X6 (X = Cl, F, OH, NH2, CH3) complexes and d-block analogues. , 2006, Inorganic chemistry.

[51]  M. Ephritikhine The vitality of uranium molecular chemistry at the dawn of the XXIst century. , 2006, Dalton transactions.

[52]  B. Roos,et al.  Quantum chemistry predicts multiply bonded diuranium compounds to be stable. , 2006, Inorganic chemistry.

[53]  M. Straka,et al.  Linear HThThH: a candidate for a Th-Th triple bond. , 2005, Journal of the American Chemical Society.

[54]  B. Roos,et al.  A very short uranium-uranium bond: the predicted metastable U(2)2+. , 2005, Physical chemistry chemical physics : PCCP.

[55]  B. Roos,et al.  Quantum chemical calculations show that the uranium molecule U2 has a quintuple bond , 2005, Nature.

[56]  F. Calderazzo,et al.  Synthesis, electrochemistry, and crystal and molecular structures of some molybdenum(0) arene derivatives with fluorinated and phenyl-substituted arene ligands , 2004 .

[57]  M. Ephritikhine,et al.  Synthesis and X-ray Crystal Structure of a Urana[1]ferrocenophane, the First Tris(1,1‘-ferrocenylene) Metal Compound , 2000 .

[58]  M. Ephritikhine,et al.  New Advances in the Chemistry of Uranium Amide Compounds , 1998 .

[59]  M. Baker,et al.  1,3,5-Trimethyl-1,3,5-triazacyclohexane tricarbonyl complexes of Mo and W as sources of the fac-M(CO)3 fragment. Mild syntheses of fac-[M(CO)3(CH3CN)3] (M=Mo, W), [W(CO)3(PR3)3], [W(CO)(alkyne)3] and [W(CO)3(π-arene)] complexes , 1998 .

[60]  M. Neurock,et al.  Experimental and Theoretical Evidence for the Formation of Several Uranium Hydride Molecules , 1997 .

[61]  M. Neurock,et al.  Experimental and Theoretical Evidence for the Isolation of Thorium Hydride Molecules in Argon Matrices , 1997 .

[62]  O. Walter,et al.  Darstellung und Charakterisierung von N(CH2PPh2)3, N(CH2PPh2)3Mo(CO)3 und [HN(CH2PPh2)3Mo(CÖ)3]BF4 / Preparation and Characterisation of N(CH2PPh2)3,N(CH2PPhi)3Mo(CO)3 and [HN(CH2PPh2)3Mo(CO)3]BF4 , 1996 .

[63]  G. Kushto,et al.  IR spectra of uranium hydride molecules isolated in solid argon , 1996 .

[64]  B. Bursten,et al.  Metal-metal bonds involving the f elements. 4. Molecular orbital studies of metal-metal and metal-ligand interactions in dinuclear uranium(V) systems , 1991 .

[65]  Melanie J. M. Pepper,et al.  Ab initio studies of the electronic structure of the diuranium molecule , 1990 .

[66]  J. D. Crane,et al.  Tripodal benzimidazolate complexes of tricarbonylmolybdenum(0) and of iron(III) , 1990 .

[67]  T. Marks,et al.  Actinide-to-transition metal bonds. Synthesis, characterization, and properties of metal-metal bonded systems having the tris(cyclopentadienyl)actinide fragment , 1987 .

[68]  D. A. Wrobleski,et al.  Synthesis and x-ray structure of (C5Me5)2Th(.mu.-PPh2)2Pt(PMe3): a complex with a thorium-platinum bond , 1986 .

[69]  G. Rossetto,et al.  Synthesis and crystal structure of triscyclopentadienyl(triphenyltin)uranium. The first example of a uranium–tin bond , 1986 .

[70]  W. Schweizer,et al.  Internal molecular motion of triphenylphosphine oxide: analysis of atomic displacement parameters for orthorhombic and monoclinic crystal modifications at 100 and 150 K , 1985 .

[71]  R. Paine,et al.  An organothorium-nickel phosphido complex with a short thorium-nickel distance. The structure of Th(.eta.5-C5Me5)2(.mu.-PPh2)2Ni(CO)2 , 1985 .

[72]  T. Marks,et al.  Metal-metal bonds involving actinides. Synthesis and characterization of a complex having an unsupported actinide to transition metal bond , 1985 .

[73]  G. Ozin,et al.  X.alpha.-SW calculations for naked actinide dimers: existence of .vphi. bonds between metal atoms , 1984 .

[74]  R. Bader,et al.  Description of conjugation and hyperconjugation in terms of electron distributions , 1983 .

[75]  V. V. Krivykh,et al.  Arenetricarbonyl-molybdenum and -tungsten complexes , 1975 .

[76]  H. Kaesz,et al.  Spectroscopic Studies of the Complexes of Acrylonitrile and Acetonitrile with the Carbonyls of Chromium, Molybdenum, and Tungsten , 1963 .

[77]  G. Wilkinson,et al.  467. Substituted carbonyl compounds of chromium, molybdenum, tungsten, and manganese , 1959 .