Interferometric tomography of fuel cells for monitoring membrane water content.

We have developed a system that uses two 1D interferometric phase projections for reconstruction of 2D water content changes over time in situ in a proton exchange membrane (PEM) fuel cell system. By modifying the filtered backprojection tomographic algorithm, we are able to incorporate a priori information about the object distribution into a fast reconstruction algorithm which is suitable for real-time monitoring.

[1]  Ravindra Datta,et al.  Sorption in Proton-Exchange Membranes An Explanation of Schroeder’s Paradox , 2003 .

[2]  David L. Jacobson,et al.  In situ neutron imaging technique for evaluation of water management systems in operating PEM fuel cells , 2004 .

[3]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[4]  Kousuke Nishida,et al.  Water content distribution in a polymer electrolyte membrane for advanced fuel cell system with liquid water supply. , 2005, Magnetic resonance imaging.

[5]  M. E. Davison,et al.  The Ill-Conditioned Nature of the Limited Angle Tomography Problem , 1983 .

[6]  Hubert A. Gasteiger,et al.  Handbook of fuel cells : fundamentals technology and applications , 2003 .

[7]  Chao-Yang Wang,et al.  Liquid Water Transport in Gas Diffusion Layer of Polymer Electrolyte Fuel Cells , 2004 .

[8]  Tim E. Olson Stabilized inversion for limited angle tomography , 1995, Defense, Security, and Sensing.

[9]  Jean St-Pierre,et al.  In-plane gradients in fuel cell structure and conditions for higher performance , 2003 .

[10]  Ofer Shapira,et al.  Large-scale optical-field measurements with geometric fibre constructs , 2006, Nature materials.

[11]  Francoise J. Preteux,et al.  Three-dimensional reconstruction from incomplete Fourier spectra: an extrapolation approach , 1996, Optics & Photonics.

[12]  J. Weidner,et al.  Diffusion of water in Nafion 115 membranes , 2000 .

[13]  Ramakant Srivastava,et al.  Experimental investigation of a surface plasmon-based integrated-optic humidity sensor , 1996 .

[14]  T. Springer,et al.  A Comparative Study of Water Uptake By and Transport Through Ionomeric Fuel Cell Membranes , 1993 .

[15]  J. M. Huntley,et al.  Temporal phase-unwrapping algorithm for automated interferogram analysis. , 1993, Applied optics.

[16]  Hilmar Franke,et al.  Optically Transparent Porous Medium for Nondestructive Studies of Microbial Biofilm Architecture and Transport Dynamics , 2005, Applied and Environmental Microbiology.

[17]  Jean St-Pierre,et al.  PEMFC In Situ Liquid-Water-Content Monitoring Status , 2007 .

[18]  A. W. M. van den Enden,et al.  Discrete Time Signal Processing , 1989 .

[19]  Laura Waller,et al.  Temperature and Water Content Measurements of Nafion Membrane in PEM Fuel Cells , 2006 .

[20]  Dennis C. Ghiglia,et al.  Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software , 1998 .

[21]  V. Perez-Mendez,et al.  TOMOGRAPHICAL IMAGING WITH LIMITED‐ANGLE INPUT , 1982 .

[22]  Laura Waller,et al.  Water Transport in Nafion® Membranes Measured by Laser Interferometry , 2008 .

[23]  M Ravichandran,et al.  Reconstruction of smooth distributions from a limited number of projections. , 1988, Applied optics.

[24]  Tamon Inouye Image Reconstruction with Limited Angle Projection Data , 1979, IEEE Transactions on Nuclear Science.

[25]  Montgomery T. Shaw,et al.  In Situ Water Sensing in a Nafion Membrane by Fluorescence Spectroscopy , 2005 .

[26]  A P Dhawan,et al.  Algorithms for limited-view computed tomography: an annotated bibliography and a challenge. , 1985, Applied optics.

[27]  D. Wilkinson,et al.  Aging mechanisms and lifetime of PEFC and DMFC , 2004 .

[28]  K.A. Michalski,et al.  Electromagnetic wave theory , 1987, Proceedings of the IEEE.

[29]  Laura Waller,et al.  Methodology to Understand the Degradation Mechanism of Nafion Membrane in PEM Fuel Cells , 2006 .

[30]  G. G. Romero,et al.  Interferometric measurement of diffusion coefficients through a scanning laser beam , 2000 .