Flexibility in the order of action and in the enzymology of the nuclease, polymerases, and ligase of vertebrate non-homologous DNA end joining: relevance to cancer, aging, and the immune system

[1]  T. E. Wilson,et al.  Evidence that base stacking potential in annealed 3' overhangs determines polymerase utilization in yeast nonhomologous end joining. , 2008, DNA repair.

[2]  T. E. Wilson,et al.  Modes of interaction among yeast Nej1, Lif1 and Dnl4 proteins and comparison to human XLF, XRCC4 and Lig4. , 2007, DNA repair.

[3]  Barbara Corneo,et al.  Rag mutations reveal robust alternative end joining , 2007, Nature.

[4]  Michael M. Murphy,et al.  IgH class switching and translocations use a robust non-classical end-joining pathway , 2007, Nature.

[5]  K. Schwarz,et al.  Single-stranded DNA ligation and XLF-stimulated incompatible DNA end ligation by the XRCC4-DNA ligase IV complex: influence of terminal DNA sequence , 2007, Nucleic acids research.

[6]  P. Charneau,et al.  Role for DNA repair factor XRCC4 in immunoglobulin class switch recombination , 2007, The Journal of experimental medicine.

[7]  A. Tomkinson,et al.  Role of Dnl4–Lif1 in nonhomologous end-joining repair complex assembly and suppression of homologous recombination , 2007, Nature Structural &Molecular Biology.

[8]  G. Chu,et al.  Cernunnos/XLF promotes the ligation of mismatched and noncohesive DNA ends , 2007, Proceedings of the National Academy of Sciences.

[9]  U. Pannicke,et al.  Length-dependent Binding of Human XLF to DNA and Stimulation of XRCC4·DNA Ligase IV Activity* , 2007, Journal of Biological Chemistry.

[10]  D. Ramsden,et al.  Loading of the Nonhomologous End Joining Factor, Ku, on Protein-occluded DNA Ends* , 2007, Journal of Biological Chemistry.

[11]  Qi Ding,et al.  trans Autophosphorylation at DNA-Dependent Protein Kinase's Two Major Autophosphorylation Site Clusters Facilitates End Processing but Not End Joining , 2007, Molecular and Cellular Biology.

[12]  M. Lieber,et al.  XRCC4:DNA ligase IV can ligate incompatible DNA ends and can ligate across gaps , 2007, The EMBO journal.

[13]  L. Povirk,et al.  Processing of 3′-Phosphoglycolate-terminated DNA Double Strand Breaks by Artemis Nuclease* , 2006, Journal of Biological Chemistry.

[14]  F. Alt,et al.  Evolution of the immunoglobulin heavy chain class switch recombination mechanism. , 2007, Advances in immunology.

[15]  T. Kunkel,et al.  Structural insight into the substrate specificity of DNA Polymerase mu. , 2007, Nature structural & molecular biology.

[16]  T. Kunkel,et al.  Structural insight into the substrate specificity of DNA Polymerase μ , 2007, Nature Structural &Molecular Biology.

[17]  S. Jackson,et al.  Evolutionary and Functional Conservation of the DNA Non-homologous End-joining Protein, XLF/Cernunnos* , 2006, Journal of Biological Chemistry.

[18]  J. Palecek,et al.  The Smc5-Smc6 DNA Repair Complex , 2006, Journal of Biological Chemistry.

[19]  Yunmei Ma,et al.  DNA-PKcs Dependence of Artemis Endonucleolytic Activity, Differences between Hairpins and 5′ or 3′ Overhangs* , 2006, Journal of Biological Chemistry.

[20]  J. Murnane Telomeres and chromosome instability. , 2006, DNA repair.

[21]  L. Povirk Biochemical mechanisms of chromosomal translocations resulting from DNA double-strand breaks. , 2006, DNA repair.

[22]  D. Ramsden,et al.  A specific loop in human DNA polymerase mu allows switching between creative and DNA-instructed synthesis , 2006, Nucleic acids research.

[23]  P. Jeggo,et al.  DNA‐PK autophosphorylation facilitates Artemis endonuclease activity , 2006, The EMBO journal.

[24]  B. Bertocci,et al.  Nonoverlapping functions of DNA polymerases mu, lambda, and terminal deoxynucleotidyltransferase during immunoglobulin V(D)J recombination in vivo. , 2006, Immunity.

[25]  E. Selsing Ig class switching: targeting the recombinational mechanism. , 2006, Current opinion in immunology.

[26]  A. Tomkinson,et al.  DNA ligases: structure, reaction mechanism, and function. , 2006, Chemical reviews.

[27]  A. Fischer,et al.  Cernunnos Interacts with the XRCC4·DNA-ligase IV Complex and Is Homologous to the Yeast Nonhomologous End-joining Factor Nej1* , 2006, Journal of Biological Chemistry.

[28]  J. Murnane,et al.  Telomeres, chromosome instability and cancer , 2006, Nucleic acids research.

[29]  S. Jackson,et al.  XLF Interacts with the XRCC4-DNA Ligase IV Complex to Promote DNA Nonhomologous End-Joining , 2006, Cell.

[30]  A. Fischer,et al.  Cernunnos, a Novel Nonhomologous End-Joining Factor, Is Mutated in Human Immunodeficiency with Microcephaly , 2006, Cell.

[31]  Yunmei Ma,et al.  The DNA-dependent Protein Kinase Catalytic Subunit Phosphorylation Sites in Human Artemis* , 2005, Journal of Biological Chemistry.

[32]  T. E. Wilson,et al.  DNA Joint Dependence of Pol X Family Polymerase Action in Nonhomologous End Joining* , 2005, Journal of Biological Chemistry.

[33]  T. Kunkel,et al.  A gradient of template dependence defines distinct biological roles for family X polymerases in nonhomologous end joining. , 2005, Molecular cell.

[34]  Yunmei Ma,et al.  The Artemis:DNA-PKcs endonuclease cleaves DNA loops, flaps, and gaps. , 2005, DNA repair.

[35]  Yunmei Ma,et al.  THE DNA-PKcs PHOSPHORYLATION SITES IN HUMAN ARTEMIS , 2005 .

[36]  Yunmei Ma,et al.  A biochemically defined system for mammalian nonhomologous DNA end joining. , 2004, Molecular cell.

[37]  F. Alt,et al.  An evolutionarily conserved target motif for immunoglobulin class-switch recombination , 2004, Nature Immunology.

[38]  M. Neuberger,et al.  Mismatch recognition and uracil excision provide complementary paths to both Ig switching and the A/T-focused phase of somatic mutation. , 2004, Molecular cell.

[39]  Alberto Martin,et al.  Altered somatic hypermutation and reduced class-switch recombination in exonuclease 1–mutant mice , 2004, Nature Immunology.

[40]  T. Kunkel,et al.  Implication of DNA Polymerase λ in Alignment-based Gap Filling for Nonhomologous DNA End Joining in Human Nuclear Extracts* , 2004, Journal of Biological Chemistry.

[41]  R. Ghirlando,et al.  Tetramerization and DNA ligase IV interaction of the DNA double-strand break repair protein XRCC4 are mutually exclusive. , 2003, Journal of molecular biology.

[42]  M. Lieber,et al.  Nucleic acid structures and enzymes in the immunoglobulin class switch recombination mechanism. , 2003, DNA repair.

[43]  C. Berek,et al.  Immunoglobulin kappa light chain gene rearrangement is impaired in mice deficient for DNA polymerase mu. , 2003, Immunity.

[44]  M. Goodman,et al.  Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation , 2003, Nature.

[45]  F. Alt,et al.  The influence of transcriptional orientation on endogenous switch region function , 2003, Nature Immunology.

[46]  M. Lieber,et al.  R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells , 2003, Nature Immunology.

[47]  D. Ramsden,et al.  Polymerase Mu Is a DNA-Directed DNA/RNA Polymerase , 2003, Molecular and Cellular Biology.

[48]  A. Tomkinson,et al.  A Physical and Functional Interaction between Yeast Pol4 and Dnl4-Lif1 Links DNA Synthesis and Ligation in Nonhomologous End Joining* , 2002, The Journal of Biological Chemistry.

[49]  T. Kunkel,et al.  DNA Polymerase (cid:1) , a Novel DNA Repair Enzyme in Human Cells* , 2022 .

[50]  Yunmei Ma,et al.  Hairpin Opening and Overhang Processing by an Artemis/DNA-Dependent Protein Kinase Complex in Nonhomologous End Joining and V(D)J Recombination , 2002, Cell.

[51]  M. Gellert V(D)J recombination: RAG proteins, repair factors, and regulation. , 2002, Annual review of biochemistry.

[52]  T. Kunkel,et al.  DNA polymerase lambda, a novel DNA repair enzyme in human cells. , 2002, The Journal of biological chemistry.

[53]  F. Alt,et al.  DNA double strand break repair and chromosomal translocation: Lessons from animal models , 2001, Oncogene.

[54]  J. Walker,et al.  Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair , 2001, Nature.

[55]  F. Alt,et al.  The nonhomologous end-joining pathway of DNA repair is required for genomic stability and the suppression of translocations. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[56]  M. Lieber,et al.  Efficient Processing of DNA Ends during Yeast Nonhomologous End Joining , 1999, The Journal of Biological Chemistry.

[57]  M. Gellert,et al.  DNA binding of Xrcc4 protein is associated with V(D)J recombination but not with stimulation of DNA ligase IV activity , 1999, The EMBO journal.

[58]  R. West,et al.  Productive and Nonproductive Complexes of Ku and DNA-Dependent Protein Kinase at DNA Termini , 1998, Molecular and Cellular Biology.

[59]  T. Lindahl,et al.  A newly identified DNA ligase of Saccharomyces cerevisiae involved in RAD52-independent repair of DNA double-strand breaks. , 1997, Genes & development.

[60]  S. Jackson,et al.  Identification of Saccharomyces cerevisiae DNA ligase IV: involvement in DNA double‐strand break repair , 1997, The EMBO journal.

[61]  M. Lieber,et al.  Yeast DNA ligase IV mediates non-homologous DNA end joining , 1997, Nature.

[62]  M. Lieber,et al.  Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells , 1997, Nature.

[63]  T. Lindahl,et al.  DNA Ligase IV from HeLa Cell Nuclei* , 1996, The Journal of Biological Chemistry.

[64]  C. Harris,et al.  Deletions and insertions in the p53 tumor suppressor gene in human cancers: confirmation of the DNA polymerase slippage/misalignment model. , 1996, Cancer research.