Hybrid Si-VO(2)-Au optical modulator based on near-field plasmonic coupling.

We present a computational design for an integrated electro-optic modulator based on near-field plasmonic coupling between gold nanodisks and a thin film of vanadium dioxide on a silicon substrate. Active modulation is achieved by applying a time-varying electric field to initiate large changes in the refractive index of vanadium dioxide. Significant decrease in device footprint (200 nm x 560 nm) and increase in extinction ratio per unit length (9 dB/µm) compared to state-of-the-art photonic and plasmonic modulators are predicted.

[1]  Harry A Atwater,et al.  Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition. , 2010, Optics express.

[2]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[3]  F. Yaghmaie,et al.  Improvement of PMMA electron-beam lithography performance in metal liftoff through a poly-imide bi-layer system , 2010 .

[4]  Kannatassen Appavoo,et al.  Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy. , 2012, Nano letters.

[5]  A. Crunteanu,et al.  Voltage- and current-activated metal–insulator transition in VO2-based electrical switches: a lifetime operation analysis , 2010, Science and technology of advanced materials.

[6]  Judson D Ryckman,et al.  Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition. , 2013, Optics express.

[7]  Xuezhe Zheng,et al.  Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator. , 2009, Optics express.

[8]  U. Koren,et al.  Miniature Mach-Zehnder InGaAsP quantum well waveguide interferometers for 1.3 mu m , 1990, IEEE Photonics Technology Letters.

[9]  J. Marti,et al.  High-speed modulation of a compact silicon ring resonator , 2009, 2009 6th IEEE International Conference on Group IV Photonics.

[10]  Xin Zhang,et al.  Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial , 2012, Nature.

[11]  R. Ghosh,et al.  Electric-field-driven phase transition in vanadium dioxide , 2011, 1201.1459.

[12]  F. Y. Gardes,et al.  Silicon optical modulators for integrated transceivers , 2013, CLEO: 2013.

[13]  Mohamed Chaker,et al.  A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction , 2014, Science.

[14]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[15]  S. Wolf,et al.  Strain Dependence of Bonding and Hybridization Across the Metal-Insulator Transition of VO2 , 2012, 1202.2286.

[16]  Xiaonan Chen,et al.  Voltage-Triggered Ultrafast Phase Transition in Vanadium Dioxide Switches , 2013, IEEE Electron Device Letters.

[17]  M. Kawasaki,et al.  Collective bulk carrier delocalization driven by electrostatic surface charge accumulation , 2012, Nature.

[18]  R. Soref,et al.  Electrooptical effects in silicon , 1987 .

[19]  Xiang Zhang,et al.  Hybrid photonic-plasmonic crystal nanocavities. , 2011, ACS nano.

[20]  Volker Eyert The metal-insulator transitions of VO2: A band theoretical approach , 2002 .

[21]  Harry A Atwater,et al.  PlasMOStor: a metal-oxide-Si field effect plasmonic modulator. , 2009, Nano letters.

[22]  Kannatassen Appavoo,et al.  Polarization selective phase-change nanomodulator , 2014, Scientific Reports.

[23]  R. F. Haglund,et al.  Ultrafast insulator-metal phase transition in VO 2 studied by multiterahertz spectroscopy , 2011, 1104.2984.

[24]  M. Stockman Nanoplasmonics: past, present, and glimpse into future. , 2011, Optics express.

[25]  S. Fourmaux,et al.  Optical switching in VO2 films by below-gap excitation , 2008 .

[26]  G. Vignaud,et al.  Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry , 2011 .

[27]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.

[28]  Sungyoul Choi,et al.  Electrical oscillations induced by the metal-insulator transition in VO2 , 2010 .

[29]  Engineering,et al.  Non-congruence of thermally driven structural and electronic transitions in VO2 , 2010 .

[30]  Jingdong Luo,et al.  Terahertz all-optical modulation in a silicon–polymer hybrid system , 2006, Nature materials.

[31]  Min Qiu,et al.  Broadband coupler between silicon waveguide and hybrid plasmonic waveguide. , 2010, Optics express.

[32]  E.L. Wooten,et al.  A review of lithium niobate modulators for fiber-optic communications systems , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[33]  A hybrid long-range plasmonic waveguide with sub-wavelength confinement , 2013 .

[34]  Joyeeta Nag,et al.  Photothermal optical modulation of ultra-compact hybrid Si-VO₂ ring resonators. , 2012, Optics express.

[35]  Joyce K. S. Poon,et al.  Sub-volt broadband hybrid plasmonic-vanadium dioxide switches , 2012, 1210.0785.

[36]  Angel Rubio,et al.  Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping. , 2014, Physical review letters.

[37]  E. Hu,et al.  Two-dimensional hybrid photonic/plasmonic crystal cavities. , 2014, Optics express.

[38]  Xiang Zhang,et al.  A graphene-based broadband optical modulator , 2011, Nature.

[39]  J. Poon,et al.  Design of electrically driven hybrid vanadium dioxide (VO2) plasmonic switches. , 2012, Optics express.

[40]  T. Horikawa,et al.  50-Gb/s ring-resonator-based silicon modulator. , 2013, Optics express.

[41]  M. Paniccia,et al.  A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor , 2004, Nature.

[42]  Kevin Wang,et al.  Decoupling of structural and electronic phase transitions in VO2. , 2012, Physical review letters.

[43]  D Hillerkuss,et al.  42.7 Gbit/s electro-optic modulator in silicon technology. , 2011, Optics express.

[44]  Charles T Rettner,et al.  Subnanosecond incubation times for electric-field-induced metallization of a correlated electron oxide. , 2014, Nature nanotechnology.

[45]  Kannatassen Appavoo,et al.  Detecting nanoscale size dependence in VO2 phase transition using a split-ring resonator metamaterial. , 2011, Nano letters.

[46]  Alexander Pergament,et al.  Electrical switching and Mott transition in VO2 , 2000 .