Sampling inequalities for sparse grids

Sampling inequalities play an important role in deriving error estimates for various reconstruction processes. They provide quantitative estimates on a Sobolev norm of a function, defined on a bounded domain, in terms of a discrete norm of the function’s sampled values and a smoothness term which vanishes if the sampling points become dense. The density measure, which is typically used to express these estimates, is the mesh norm or Hausdorff distance of the discrete points to the bounded domain. Such a density measure intrinsically suffers from the curse of dimension. The curse of dimension can be circumvented, at least to a certain extend, by considering additional structures. Here, we will focus on bounded mixed regularity. In this situation sparse grid constructions have been proven to overcome the curse of dimension to a certain extend. In this paper, we will concentrate on a special construction for such sparse grids, namely Smolyak’s method and provide sampling inequalities for mixed regularity functions on such sparse grids in terms of the number of points in the sparse grid. Finally, we will give some applications of these sampling inequalities.

[1]  T. Ullrich Smolyak ’ s Algorithm , Sampling on Sparse Grids and Sobolev Spaces of Dominating Mixed Smoothness , 2006 .

[2]  Henryk Wozniakowski,et al.  Explicit Cost Bounds of Algorithms for Multivariate Tensor Product Problems , 1995, J. Complex..

[3]  Erich Novak,et al.  High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..

[4]  Markus Hegland,et al.  Fitting multidimensional data using gradient penalties and the sparse grid combination technique , 2009, Computing.

[5]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[6]  E. Cheney Introduction to approximation theory , 1966 .

[7]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[8]  Holger Wendland,et al.  Approximate Interpolation with Applications to Selecting Smoothing Parameters , 2005, Numerische Mathematik.

[9]  Chen Zhi-xiang Error estimates for scattered data interpolation on spheres , 2009 .

[10]  Benjamin Peherstorfer,et al.  Selected Recent Applications of Sparse Grids , 2015 .

[11]  Holger Wendland,et al.  Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting , 2004, Math. Comput..

[12]  Grace Wahba,et al.  Spline Models for Observational Data , 1990 .

[13]  Robert Schaback,et al.  Sampling and Stability , 2008, MMCS.

[14]  G. Wahba Spline models for observational data , 1990 .

[15]  Christian Rieger,et al.  Deterministic Error Analysis of Support Vector Regression and Related Regularized Kernel Methods , 2009, J. Mach. Learn. Res..

[16]  Andreas Neubauer,et al.  Preconditioning Landweber iteration in Hilbert scales , 2005, Numerische Mathematik.

[17]  Winfried Sickel,et al.  Sampling on energy-norm based sparse grids for the optimal recovery of Sobolev type functions in Hγ , 2014, J. Approx. Theory.

[18]  A. K. Louis,et al.  Sobolev error estimates and a priori parameter selection for semi-discrete Tikhonov regularization , 2009 .

[19]  María Cruz López de Silanes,et al.  An extension of a bound for functions in Sobolev spaces, with applications to (m, s)-spline interpolation and smoothing , 2007, Numerische Mathematik.

[20]  Endre Süli,et al.  Sparse Grids for Higher Dimensional Problems , 2006 .

[21]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[22]  Jochen Krebs,et al.  Support vector regression for the solution of linear integral equations , 2011 .

[23]  W. R. Madych,et al.  An estimate for multivariate interpolation II , 2006, J. Approx. Theory.

[24]  Christian Rieger,et al.  Improved Exponential Convergence Rates by Oversampling Near the Boundary , 2014 .

[25]  W. Sickel,et al.  Smolyak’s Algorithm, Sampling on Sparse Grids and Function Spaces of Dominating Mixed Smoothness , 2006 .