Model-Based Algorithm Configuration with Default-Guided Probabilistic Sampling

In recent years, general-purpose automated algorithm configuration procedures have enabled impressive improvements in the state of the art in solving a wide range of challenging problems from AI, operations research and other areas. To search vast combinatorial spaces of parameter settings for a given algorithm as efficiently as possible, the most successful configurators combine techniques such as racing, estimation of distribution algorithms, Bayesian optimisation and model-free stochastic search. Two of the most widely used general-purpose algorithm configurators, SMAC and irace, can be seen as combinations of Bayesian optimisation and racing, and of racing and an estimation of distribution algorithm, respectively. Here, we propose a first approach that combines all three of these techniques into one single configurator, while exploiting prior knowledge contained in expert-chosen default parameter values. We demonstrate significant performance improvements over irace and SMAC on a broad range of running time optimisation scenarios from AClib.

[1]  Holger H. Hoos,et al.  Programming by optimization , 2012, Commun. ACM.

[2]  Kevin Leyton-Brown,et al.  Sequential Model-Based Optimization for General Algorithm Configuration , 2011, LION.

[3]  Holger H. Hoos,et al.  Automated Algorithm Configuration and Parameter Tuning , 2012, Autonomous Search.

[4]  M. Fox,et al.  The 3rd International Planning Competition: Results and Analysis , 2003, J. Artif. Intell. Res..

[5]  Thomas Stützle,et al.  F-Race and Iterated F-Race: An Overview , 2010, Experimental Methods for the Analysis of Optimization Algorithms.

[6]  Alper Atamtürk,et al.  A study of the lot-sizing polytope , 2004, Math. Program..

[7]  Lars Kotthoff,et al.  Auto-WEKA 2.0: Automatic model selection and hyperparameter optimization in WEKA , 2017, J. Mach. Learn. Res..

[8]  Marius Lindauer,et al.  Warmstarting of Model-based Algorithm Configuration , 2017, AAAI.

[9]  Alfonso Gerevini,et al.  Automatic Generation of Efficient Domain-Optimized Planners from Generic Parametrized Planners , 2013, SOCS.

[10]  Ivan Serina,et al.  An approach to efficient planning with numerical fluents and multi-criteria plan quality , 2008, Artif. Intell..

[11]  Ashish Sabharwal,et al.  An Empirical Study of Optimization for Maximizing Diffusion in Networks , 2010, CP.

[12]  F. Hutter,et al.  Hydra-MIP : Automated Algorithm Configuration and Selection for Mixed Integer Programming , 2011 .

[13]  Yoav Shoham,et al.  Towards a universal test suite for combinatorial auction algorithms , 2000, EC '00.

[14]  Carlos Ansótegui,et al.  A Gender-Based Genetic Algorithm for the Automatic Configuration of Algorithms , 2009, CP.

[15]  M. Helmert,et al.  FD-Autotune: Domain-Specific Configuration using Fast Downward , 2011 .

[16]  Kevin Leyton-Brown,et al.  Automated Configuration of Mixed Integer Programming Solvers , 2010, CPAIOR.

[17]  Shaowei Cai,et al.  Local Search with Efficient Automatic Configuration for Minimum Vertex Cover , 2019, IJCAI.

[18]  Armin Biere,et al.  Automated Testing and Debugging of SAT and QBF Solvers , 2010, SAT.

[19]  Ivan Serina,et al.  Planning Through Stochastic Local Search and Temporal Action Graphs in LPG , 2003, J. Artif. Intell. Res..

[20]  Yuri Malitsky,et al.  Model-Based Genetic Algorithms for Algorithm Configuration , 2015, IJCAI.

[21]  Daniel S. Weld,et al.  Temporal Planning with Continuous Change , 1994, AAAI.

[22]  Thomas Stützle,et al.  AClib: A Benchmark Library for Algorithm Configuration , 2014, LION.

[23]  Leslie Pérez Cáceres,et al.  The irace package: Iterated racing for automatic algorithm configuration , 2016 .

[24]  Marius Thomas Lindauer,et al.  The Configurable SAT Solver Challenge (CSSC) , 2015, Artif. Intell..

[25]  Holger H. Hoos,et al.  Algorithm Configuration Landscapes: - More Benign Than Expected? , 2018, PPSN.

[26]  Martin Gebser,et al.  Conflict-driven answer set solving: From theory to practice , 2012, Artif. Intell..

[27]  Armin Biere Yet another Local Search Solver and Lingeling and Friends Entering the SAT Competition 2014 , 2014 .

[28]  Holger H. Hoos,et al.  Analysing differences between algorithm configurations through ablation , 2015, Journal of Heuristics.

[29]  Kevin Leyton-Brown,et al.  Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms , 2012, KDD.

[30]  Ashish Sabharwal,et al.  Connections in Networks: A Hybrid Approach , 2008, CPAIOR.

[31]  Martin Pelikan,et al.  An introduction and survey of estimation of distribution algorithms , 2011, Swarm Evol. Comput..

[32]  T.,et al.  An experimental study of adaptive capping in irace , 2017 .

[33]  Ivan Serina,et al.  An Empirical Analysis of Some Heuristic Features for Planning through Local Search and Action Graphs , 2011, Fundam. Informaticae.

[34]  Frank Hutter,et al.  Speeding Up Automatic Hyperparameter Optimization of Deep Neural Networks by Extrapolation of Learning Curves , 2015, IJCAI.

[35]  Holger Hoos,et al.  Exploitation of Default Parameter Values in Automated Algorithm Configuration , 2019 .