Synaptic Properties of SOM- and CCK-Expressing Cells in Dentate Gyrus Interneuron Networks

Hippocampal GABAergic cells are highly heterogeneous, but the functional significance of this diversity is not fully understood. By using paired recordings of synaptically connected interneurons in slice preparations of the rat and mouse dentate gyrus (DG), we show that morphologically identified interneurons form complex neuronal networks. Synaptic inhibitory interactions exist between cholecystokinin (CCK)-expressing hilar commissural associational path (HICAP) cells and among somatostatin (SOM)-containing hilar perforant path-associated (HIPP) interneurons. Moreover, both interneuron types inhibit parvalbumin (PV)-expressing perisomatic inhibitory basket cells (BCs), whereas BCs and HICAPs rarely target HIPP cells. HICAP and HIPP cells produce slow, weak, and unreliable inhibition onto postsynaptic interneurons. The time course of inhibitory signaling is defined by the identity of the presynaptic and postsynaptic cell. It is the slowest for HIPP–HIPP, intermediately slow for HICAP–HICAP, but fast for BC–BC synapses. GABA release at interneuron–interneuron synapses also shows cell type-specific short-term dynamics, ranging from multiple-pulse facilitation at HICAP–HICAP, biphasic modulation at HIPP–HIPP to depression at BC–BC synapses. Although dendritic inhibition at HICAP–BC and HIPP–BC synapses appears weak and slow, channelrhodopsin 2-mediated excitation of SOM terminals demonstrates that they effectively control the activity of target interneurons. They markedly reduce the discharge probability but sharpen the temporal precision of action potential generation. Thus, dendritic inhibition seems to play an important role in determining the activity pattern of GABAergic interneuron populations and thereby the flow of information through the DG circuitry.

[1]  D. Amaral A golgi study of cell types in the hilar region of the hippocampus in the rat , 1978, The Journal of comparative neurology.

[2]  T. Freund,et al.  Differences between Somatic and Dendritic Inhibition in the Hippocampus , 1996, Neuron.

[3]  A. Agmon,et al.  Short-Term Plasticity of Unitary Inhibitory-to-Inhibitory Synapses Depends on the Presynaptic Interneuron Subtype , 2012, The Journal of Neuroscience.

[4]  G. Buzsáki,et al.  Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  M. Scanziani,et al.  How Inhibition Shapes Cortical Activity , 2011, Neuron.

[6]  Peter Somogyi,et al.  Cell surface domain specific postsynaptic currents evoked by identified GABAergic neurones in rat hippocampus in vitro , 2000, The Journal of physiology.

[7]  Stefan Hefft,et al.  Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron–principal neuron synapse , 2005, Nature Neuroscience.

[8]  R. Tsien,et al.  Presynaptic enhancement shown by whole-cell recordings of long-term potentiation in hippocampal slices , 1990, Nature.

[9]  Dennis A. Turner,et al.  Interneurons of the Dentate–Hilus Border of the Rat Dentate Gyrus: Morphological and Electrophysiological Heterogeneity , 1997, The Journal of Neuroscience.

[10]  Massimo Scanziani,et al.  Routing of spike series by dynamic circuits in the hippocampus , 2004, Nature.

[11]  M. Todorova,et al.  Asynchronous release of GABA via tonic cannabinoid receptor activation at identified interneuron synapses in rat CA1 , 2010, The European journal of neuroscience.

[12]  M. Frotscher,et al.  Synaptic connections of cholecystokinin‐immunoreactive neurons and terminals in the rat fascia dentata: A combined light and electron microscopic study , 1986, The Journal of comparative neurology.

[13]  Massimo Scanziani,et al.  Distinct timing in the activity of cannabinoid-sensitive and cannabinoid-insensitive basket cells , 2006, Nature Neuroscience.

[14]  P. Somogyi,et al.  Target-cell-specific facilitation and depression in neocortical circuits , 1998, Nature Neuroscience.

[15]  T. Freund,et al.  Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells , 2001, Neuroscience.

[16]  C. McBain,et al.  Presynaptic Kainate Receptor Activation Preserves Asynchronous GABA Release Despite the Reduction in Synchronous Release from Hippocampal Cholecystokinin Interneurons , 2010, The Journal of Neuroscience.

[17]  J. Csicsvari,et al.  Mechanisms of Gamma Oscillations in the Hippocampus of the Behaving Rat , 2003, Neuron.

[18]  D. Lewis,et al.  P/Q-type, but not N-type, calcium channels mediate GABA release from fast-spiking interneurons to pyramidal cells in rat prefrontal cortex. , 2007, Journal of neurophysiology.

[19]  Menno P. Witter,et al.  Connectivity of the Hippocampus , 2010 .

[20]  William Wisden,et al.  Parvalbumin-positive CA1 interneurons are required for spatial working but not for reference memory , 2011, Nature Neuroscience.

[21]  Peter Jonas,et al.  Distinct nonuniform cable properties optimize rapid and efficient activation of fast-spiking GABAergic interneurons , 2009, Proceedings of the National Academy of Sciences.

[22]  P. Jonas,et al.  Efficacy and Stability of Quantal GABA Release at a Hippocampal Interneuron–Principal Neuron Synapse , 2000, The Journal of Neuroscience.

[23]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[24]  P. Somogyi,et al.  Subdivisions in the Multiple GABAergic Innervation of Granule Cells in the Dentate Gyrus of the Rat Hippocampus , 1993, The European journal of neuroscience.

[25]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[26]  M. Wilson,et al.  Dentate Gyrus NMDA Receptors Mediate Rapid Pattern Separation in the Hippocampal Network , 2007, Science.

[27]  M. Bartos,et al.  Associative Plasticity at Excitatory Synapses Facilitates Recruitment of Fast-Spiking Interneurons in the Dentate Gyrus , 2010, The Journal of Neuroscience.

[28]  D. Brody,et al.  Preferential Closed-State Inactivation of Neuronal Calcium Channels , 1998, Neuron.

[29]  P. Somogyi,et al.  Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons , 1995, Nature.

[30]  J. Douglas Armstrong,et al.  Bioinformatics Applications Note Systems Biology Simple Neurite Tracer: Open Source Software for Reconstruction, Visualization and Analysis of Neuronal Processes , 2022 .

[31]  G. Buzsáki,et al.  Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model , 1996, The Journal of Neuroscience.

[32]  Adriano B. L. Tort,et al.  OLM interneurons differentially modulate CA3 and entorhinal inputs to hippocampal CA1 neurons , 2012, Nature Neuroscience.

[33]  M. Bartos,et al.  Functional characteristics of parvalbumin‐ and cholecystokinin‐expressing basket cells , 2012, The Journal of physiology.

[34]  Arnd Roth,et al.  Submillisecond AMPA Receptor-Mediated Signaling at a Principal Neuron–Interneuron Synapse , 1997, Neuron.

[35]  Daniel Johnston,et al.  Dendritic attenuation of synaptic potentials and currents: the role of passive membrane properties , 1994, Trends in Neurosciences.

[36]  Li I. Zhang,et al.  Visual Representations by Cortical Somatostatin Inhibitory Neurons—Selective But with Weak and Delayed Responses , 2010, The Journal of Neuroscience.

[37]  T. Freund,et al.  Total Number and Ratio of Excitatory and Inhibitory Synapses Converging onto Single Interneurons of Different Types in the CA1 Area of the Rat Hippocampus , 1999, The Journal of Neuroscience.

[38]  P. Somogyi,et al.  A High Degree of Spatial Selectivity in the Axonal and Dendritic Domains of Physiologically Identified Local‐circuit Neurons in the Dentate Gyms of the Rat Hippocampus , 1993, The European journal of neuroscience.

[39]  P. Jonas,et al.  Postnatal Differentiation of Basket Cells from Slow to Fast Signaling Devices , 2008, The Journal of Neuroscience.

[40]  Yuchio Yanagawa,et al.  Morpho-physiological Criteria Divide Dentatecc Gyrus Interneurons into Classes , 2013, Hippocampus.

[41]  John M. Bekkers,et al.  Modulation of Excitability by α-Dendrotoxin-Sensitive Potassium Channels in Neocortical Pyramidal Neurons , 2001, The Journal of Neuroscience.

[42]  B. McNaughton,et al.  Differential modulation of CA1 and dentate gyrus interneurons during exploration of novel environments. , 2004, Journal of neurophysiology.

[43]  Pablo Fuentealba,et al.  Cell Type-Specific Tuning of Hippocampal Interneuron Firing during Gamma Oscillations In Vivo , 2007, The Journal of Neuroscience.

[44]  P. Saggau,et al.  Block of multiple presynaptic calcium channel types by omega-conotoxin-MVIIC at hippocampal CA3 to CA1 synapses. , 1995, Journal of neurophysiology.

[45]  T. Bliss,et al.  Lamellar organization of hippocampal excitatory pathways , 1971, Experimental Brain Research.

[46]  P. Somogyi,et al.  Defined types of cortical interneurone structure space and spike timing in the hippocampus , 2005, The Journal of physiology.

[47]  M. Frotscher,et al.  Laminating the hippocampus , 2006, Nature Reviews Neuroscience.

[48]  A. Thomson,et al.  Release‐independent depression at pyramidal inputs onto specific cell targets: dual recordings in slices of rat cortex , 1999, The Journal of physiology.

[49]  P. Jonas,et al.  Dendritic Mechanisms Underlying Rapid Synaptic Activation of Fast-Spiking Hippocampal Interneurons , 2010, Science.

[50]  Thomas M. Morse,et al.  Compartmentalization of GABAergic Inhibition by Dendritic Spines , 2013, Science.

[51]  N L Harrison,et al.  Activation and deactivation rates of recombinant GABA(A) receptor channels are dependent on alpha-subunit isoform. , 1997, Biophysical journal.

[52]  W. H. Mcmenemey,et al.  THE STRUCTURE OF AMMON'S HORN , 1969 .

[53]  E. Rolls,et al.  Computational analysis of the role of the hippocampus in memory , 1994, Hippocampus.

[54]  M. Frotscher,et al.  Differential GABAB-Receptor-Mediated Effects in Perisomatic- and Dendrite-Targeting Parvalbumin Interneurons , 2013, The Journal of Neuroscience.

[55]  C. Stevens,et al.  Estimates for the pool size of releasable quanta at a single central synapse and for the time required to refill the pool. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[56]  M. Moser,et al.  Pattern Separation in the Dentate Gyrus and CA3 of the Hippocampus , 2007, Science.

[57]  E. Neher,et al.  Vesicle pools and short-term synaptic depression: lessons from a large synapse , 2002, Trends in Neurosciences.

[58]  J. Fritschy,et al.  GABAA‐receptor heterogeneity in the adult rat brain: Differential regional and cellular distribution of seven major subunits , 1995, The Journal of comparative neurology.

[59]  P. Somogyi,et al.  Immunocytochemical Localization of the α1 and β2/3 Subunits of the GABAA Receptor in Relation to Specific GABAergic Synapses in the Dentate Gyrus , 1995 .

[60]  Chris J. McBain,et al.  Interneurons unbound , 2001, Nature Reviews Neuroscience.

[61]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[62]  T. Klausberger,et al.  The parvalbumin-positive interneurons in the mouse dentate gyrus express GABAA receptor subunits alpha1, beta2, and delta along their extrasynaptic cell membrane , 2013, Neuroscience.

[63]  M. Häusser,et al.  Estimating the Time Course of the Excitatory Synaptic Conductance in Neocortical Pyramidal Cells Using a Novel Voltage Jump Method , 1997, The Journal of Neuroscience.

[64]  A. Thomson,et al.  Differential sensitivity to Zolpidem of IPSPs activated by morphologically identified CA1 interneurons in slices of rat hippocampus , 2000, The European journal of neuroscience.

[65]  Attila I Gulyás,et al.  Convergence of excitatory and inhibitory inputs onto CCK‐containing basket cells in the CA1 area of the rat hippocampus , 2004, The European journal of neuroscience.

[66]  M. Scanziani,et al.  Inhibition of Inhibition in Visual Cortex: The Logic of Connections Between Molecularly Distinct Interneurons , 2013, Nature Neuroscience.

[67]  M. Frotscher,et al.  Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[68]  P. Somogyi,et al.  Input‐dependent synaptic targeting of α2‐subunit‐containing GABAA receptors in synapses of hippocampal pyramidal cells of the rat , 2001, The European journal of neuroscience.

[69]  Marco Capogna,et al.  Neurogliaform Neurons Form a Novel Inhibitory Network in the Hippocampal CA1 Area , 2005, The Journal of Neuroscience.

[70]  Thomas Klausberger,et al.  Distinct Firing Patterns of Identified Basket and Dendrite-Targeting Interneurons in the Prefrontal Cortex during Hippocampal Theta and Local Spindle Oscillations , 2009, The Journal of Neuroscience.

[71]  R. Tremblay,et al.  Neocortical Somatostatin-Expressing GABAergic Interneurons Disinhibit the Thalamorecipient Layer 4 , 2013, Neuron.

[72]  Karen L. Smith,et al.  Novel Hippocampal Interneuronal Subtypes Identified Using Transgenic Mice That Express Green Fluorescent Protein in GABAergic Interneurons , 2000, The Journal of Neuroscience.

[73]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[74]  M. Frotscher,et al.  Rapid Signaling at Inhibitory Synapses in a Dentate Gyrus Interneuron Network , 2001, The Journal of Neuroscience.

[75]  P. Somogyi,et al.  Cell Type- and Input-Specific Differences in the Number and Subtypes of Synaptic GABAA Receptors in the Hippocampus , 2002, The Journal of Neuroscience.

[76]  Bernardo Rudy,et al.  Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing , 2001, Trends in Neurosciences.

[77]  W. Yamada,et al.  Time course of transmitter release calculated from simulations of a calcium diffusion model. , 1992, Biophysical journal.

[78]  P. Jonas,et al.  Shunting Inhibition Improves Robustness of Gamma Oscillations in Hippocampal Interneuron Networks by Homogenizing Firing Rates , 2006, Neuron.

[79]  H. Eibel,et al.  Efficient generation of transgenic BALB/c mice using BALB/c embryonic stem cells. , 1999, Journal of immunological methods.

[80]  T. Freund,et al.  Electrotonic profile and passive propagation of synaptic potentials in three subpopulations of hippocampal CA1 interneurons , 2001, Neuroscience.

[81]  M. Bartos,et al.  Recruitment of Early Postnatal Parvalbumin-Positive Hippocampal Interneurons by GABAergic Excitation , 2010, The Journal of Neuroscience.

[82]  B. Sakmann,et al.  Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell‐specific difference in presynaptic calcium dynamics , 2001, The Journal of physiology.

[83]  G. Westbrook,et al.  The impact of receptor desensitization on fast synaptic transmission , 1996, Trends in Neurosciences.

[84]  M. Scanziani,et al.  Enforcement of Temporal Fidelity in Pyramidal Cells by Somatic Feed-Forward Inhibition , 2001, Science.

[85]  G. Buzsáki,et al.  Unusual Target Selectivity of Perisomatic Inhibitory Cells in the Hilar Region of the Rat Hippocampus , 2000, The Journal of Neuroscience.

[86]  P. Schwartzkroin,et al.  Physiological and Morphological Heterogeneity of Dentate Gyrus—Hilus Interneurons in the Gerbil Hippocampus In Vivo , 1995, The European journal of neuroscience.