Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients
暂无分享,去创建一个
[1] DickJosef,et al. Infinite-Dimensional Integration in Weighted Hilbert Spaces , 2014 .
[2] Robert Scheichl,et al. Finite Element Error Analysis of Elliptic PDEs with Random Coefficients and Its Application to Multilevel Monte Carlo Methods , 2013, SIAM J. Numer. Anal..
[3] Frances Y. Kuo,et al. Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces , 2003, J. Complex..
[4] Henryk Wozniakowski,et al. When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..
[5] Henryk Wozniakowski,et al. Finite-order weights imply tractability of multivariate integration , 2004, J. Complex..
[6] I. H. SLOAN,et al. Constructing Randomly Shifted Lattice Rules in Weighted Sobolev Spaces , 2002, SIAM J. Numer. Anal..
[7] Christoph Schwab,et al. Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..
[8] I. Sloan,et al. QUASI-MONTE CARLO METHODS FOR HIGH-DIMENSIONAL INTEGRATION: THE STANDARD (WEIGHTED HILBERT SPACE) SETTING AND BEYOND , 2011, The ANZIAM Journal.
[9] K. A. Cliffe,et al. Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..
[10] Claude Jeffrey Gittelson,et al. Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.
[11] Andrea Barth,et al. Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.
[12] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[13] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[14] Michael Gnewuch,et al. Infinite-dimensional integration on weighted Hilbert spaces , 2012, Math. Comput..
[15] G. Fix. Review: Philippe G. Ciarlet, The finite element method for elliptic problems , 1979 .
[16] Grzegorz W. Wasilkowski,et al. Tractability of infinite-dimensional integration in the worst case and randomized settings , 2011, J. Complex..
[17] Josef Dick. On the convergence rate of the component-by-component construction of good lattice rules , 2004, J. Complex..
[18] Dirk Nuyens,et al. Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces , 2006, Math. Comput..
[19] Christoph Schwab,et al. Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients , 2007 .
[20] Frances Y. Kuo,et al. Constructing Embedded Lattice Rules for Multivariate Integration , 2006, SIAM J. Sci. Comput..
[21] Albert Cohen,et al. Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..
[22] S. Joe. Construction of Good Rank-1 Lattice Rules Based on the Weighted Star Discrepancy , 2006 .
[23] M. Giles. Improved Multilevel Monte Carlo Convergence using the Milstein Scheme , 2008 .
[24] W. Dahmen,et al. Biorthogonal Spline Wavelets on the Interval—Stability and Moment Conditions , 1999 .
[25] Xiaoqun Wang,et al. Strong tractability of multivariate integration using quasi-Monte Carlo algorithms , 2003, Math. Comput..
[26] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[27] Michael B. Giles,et al. Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..
[28] Henryk Wozniakowski,et al. Liberating the weights , 2004, J. Complex..
[29] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[30] Frances Y. Kuo,et al. Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications , 2011, J. Comput. Phys..
[31] Josef Dick,et al. The construction of good extensible rank-1 lattices , 2008, Math. Comput..
[32] I. Sloan,et al. Brownian bridge and principal component analysis: towards removing the curse of dimensionality , 2007 .
[33] Fred J. Hickernell,et al. Multi-level Monte Carlo algorithms for infinite-dimensional integration on RN , 2010, J. Complex..
[34] Dirk Nuyens,et al. Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points , 2006, J. Complex..
[35] Hoang-Ngan Nguyen,et al. Finite element wavelets for solving partial differential equations , 2005 .
[36] Stephen Joe,et al. Good lattice rules based on the general weighted star discrepancy , 2007, Math. Comput..
[37] Henryk Wozniakowski,et al. Liberating the dimension , 2010, J. Complex..
[38] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[39] Stefan Heinrich,et al. Multilevel Monte Carlo Methods , 2001, LSSC.
[40] Fred J. Hickernell,et al. Deterministic multi-level algorithms for infinite-dimensional integration on RN , 2011, J. Complex..
[41] Gerhard Larcher,et al. On the tractability of the Brownian Bridge algorithm , 2003, J. Complex..