A formal language theory approach to music generation

We investigate the suitability of applying some of the probabilistic and automata theoretic ideas, that have been extremely successful in the areas of speech and natural language processing, to the area of musical style imitation. By using music written in a certain style as training data, parameters are calculated for (visible and hidden) Markov models (of mixed, higher or first order), in order to capture the musical style of the training data in terms of mathematical models. These models are then used to imitate two instrument music in the trained style.

[1]  Frank Drewes Grammatical Picture Generation - A Tree-Based Approach , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[2]  Dana Ron,et al.  The power of amnesia: Learning probabilistic automata with variable memory length , 1996, Machine Learning.

[3]  Johan A. du Preez,et al.  Efficient Mixed-Order Hidden Markov Model Inference , 2007 .

[4]  François Pachet,et al.  The Continuator: Musical Interaction With Style , 2003, ICMC.

[5]  Ian H. Witten,et al.  Tune Retrieval in the Multimedia Library , 2000, Multimedia Tools and Applications.

[6]  Dan Morris,et al.  MySong: automatic accompaniment generation for vocal melodies , 2008, CHI.

[7]  Frank Drewes,et al.  Treebag|a Tree-based Generator for Objects of Various Types , 1998 .

[8]  J. Haycox Standard generalized markup language (SGML) as a basis for an intelligent data management system , 1993, Proceedings of the IEEE 1993 National Aerospace and Electronics Conference-NAECON 1993.

[9]  Erik Wilde,et al.  XML fever , 2008, CACM.

[10]  Darrell Conklin,et al.  Music Generation from Statistical Models , 2003 .

[11]  Robert W. Ottman Elementary Harmony: Theory and Practice , 1970 .

[12]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[13]  Hubert Comon,et al.  Tree automata techniques and applications , 1997 .

[14]  Peter M. Todd,et al.  Frankensteinian methods for evolutionary music composition , 1999 .

[15]  Ichiro Fujinaga,et al.  Lilypond for pyScore: Approaching a universal translator for music notation , 2006, ISMIR.

[16]  François Pachet,et al.  Musical Harmonization with Constraints: A Survey , 2004, Constraints.

[17]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[18]  Alex Acero,et al.  Spoken Language Processing: A Guide to Theory, Algorithm and System Development , 2001 .

[19]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, CACM.

[20]  Darrell Conklin,et al.  Representation and Discovery of Multiple Viewpoint Patterns , 2001, ICMC.

[21]  Chris Mellish,et al.  Statistical Learning of Harmonic Movement , 1999 .

[22]  Christopher K. I. Williams,et al.  Harmonising Chorales by Probabilistic Inference , 2004, NIPS.

[23]  Thomas Schwentick,et al.  XML: Model, Schemas, Types, Logics, and Queries , 2003, Logics for Emerging Applications of Databases.

[24]  Alan K. Mackworth Consistency in Networks of Relations , 1977, Artif. Intell..

[25]  Bryan Ford,et al.  Parsing expression grammars: a recognition-based syntactic foundation , 2004, POPL '04.

[26]  Marsha Berman,et al.  The directory of tunes and musical themes , 1975 .

[27]  Frank Drewes Grammatical Picture Generation: A Tree-Based Approach (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[28]  Francisco Casacuberta,et al.  Probabilistic finite-state machines - part I , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Shlomo Dubnov,et al.  Using Machine-Learning Methods for Musical Style Modeling , 2003, Computer.

[30]  David L. Waltz,et al.  Generating Semantic Descriptions From Drawings of Scenes With Shadows , 1972 .

[31]  Pierre Dupont,et al.  Links between probabilistic automata and hidden Markov models: probability distributions, learning models and induction algorithms , 2005, Pattern Recognit..

[32]  Abraham Lempel,et al.  Compression of individual sequences via variable-rate coding , 1978, IEEE Trans. Inf. Theory.

[33]  Peter M Todd,et al.  A-Life and Musical Composition : A Brief Survey , 2003 .

[34]  Alaa A. Kharbouch,et al.  Three models for the description of language , 1956, IRE Trans. Inf. Theory.

[35]  Rafael Morales-Bueno,et al.  Using Multiattribute Prediction Suffix Graphs to Predict and Generate Music , 2001 .

[36]  François Pachet Mixing Constraints and Objects: a Case Study in Automatic Harmonization , 2007 .

[37]  Eduardo Reck Miranda,et al.  Mimetic Development of Intonation , 2002, ICMAI.

[38]  Johanna Högberg,et al.  Wind in the Willows , 2005 .

[39]  C. Michael Sperberg-McQueen,et al.  Extensible Markup Language (XML) Version 1.0 , 2000 .