Distribution of a Sum of Weighted Central Chi-Square Variables

Abstract We derive a Laguerre expansion for the inverse Laplace transform, based on the estimation problem in the gamma distribution. This procedure is used to obtain the density and distribution functions of a sum of positive weighted central chi-square variables as a series in Laguerre polynomials. The formulas so obtained will depend on certain parameters which adequately chosen will give some expressions already known in the literature and some new ones. Finally, we obtain bounds for the truncation error in the numerical approximations.

[1]  Herbert Robbins,et al.  The Distribution of a Definite Quadratic Form , 1948 .

[2]  H. Robbins,et al.  Application of the Method of Mixtures to Quadratic Forms in Normal Variates , 1949 .

[3]  J. Pachares,et al.  Note on the Distribution of a Definite Quadratic Form , 1955 .

[4]  J. Gurland,et al.  Distribution of Definite and of Indefinite Quadratic Forms , 1955 .

[5]  H. Ruben,et al.  Probability Content of Regions Under Spherical Normal Distributions, I , 1960 .

[6]  J. Imhof Computing the distribution of quadratic forms in normal variables , 1961 .

[7]  N. L. Johnson,et al.  SERIES REPRESENTATIONS OF DISTRIBUTIONS OF QUADRATIC FORMS IN NORMAL VARIABLES, I. CENTRAL CASE, , 1967 .

[8]  Robert Piessens,et al.  Numerical inversion of the Laplace transform using generalised Laguerre polynomials , 1971 .

[9]  D. R. Jensen,et al.  A Gaussian Approximation to the Distribution of a Definite Quadratic Form , 1972 .

[10]  Rudy A. Gideon,et al.  Series Expansions for Quadratic Forms in Normal Variables , 1976 .

[11]  C. Morris Natural Exponential Families with Quadratic Variance Functions , 1982 .

[12]  C. Morris Natural Exponential Families with Quadratic Variance Functions: Statistical Theory , 1983 .

[13]  A. Scott,et al.  On Chi-Squared Tests for Multiway Contingency Tables with Cell Proportions Estimated from Survey Data , 1984 .

[14]  A. M. Mathai Quadratic forms in random variables , 1992 .

[15]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[16]  M. Anshelevich,et al.  Introduction to orthogonal polynomials , 2003 .

[17]  G. Milovanović,et al.  Numerical Inversion of the Laplace Transform , 2005 .