Methods and infrastructure in the era of accelerator-centric architectures

Computer architecture today is anything but business as usual, and what is bad for business is often great for science. As Moore's Law continues to unwaveringly march forward, despite the ceasing of Dennard scaling, continued performance gains with each processor generation has become a significant challenge, and requires creative solutions. Namely, the way to continue to scale performance in light of power issues is through hardware specialization. Hardware accelerators promise not only orders of magnitude in performance improvements over general purpose processors, but sport similar energy efficiency gains. However, accelerators are equal parts problem solver as they are creator. The major problem is designing and integrating accelerators into a complex environment within the stringent SoC design cycles. Given that each accelerator has a rich design space and convoluted implications and interactions with the memory system, better mechanisms for studying this new-breed of SoC are needed. To usher in the new era of computer architecture, we have built Aladdin: a high-level accelerator simulator enabling rapid accelerator design. Aladdin was recently extended to operate in conjunction with gem5 to study memory system interactions. In this paper we will recount the operation and utilities of Aladdin and gem5-Aladdin, concluding with a case study of how Aladdin can be used to optimize DNN accelerators.

[1]  Gu-Yeon Wei,et al.  Co-designing accelerators and SoC interfaces using gem5-Aladdin , 2016, 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[2]  Somayeh Sardashti,et al.  The gem5 simulator , 2011, CARN.

[3]  Gu-Yeon Wei,et al.  Aladdin: A pre-RTL, power-performance accelerator simulator enabling large design space exploration of customized architectures , 2014, 2014 ACM/IEEE 41st International Symposium on Computer Architecture (ISCA).

[4]  Gu-Yeon Wei,et al.  Minerva: Enabling Low-Power, Highly-Accurate Deep Neural Network Accelerators , 2016, 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA).

[5]  Gu-Yeon Wei,et al.  MachSuite: Benchmarks for accelerator design and customized architectures , 2014, 2014 IEEE International Symposium on Workload Characterization (IISWC).

[6]  Gu-Yeon Wei,et al.  A case for efficient accelerator design space exploration via Bayesian optimization , 2017, 2017 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED).