An Efficient Parallel MLPG Method for Poroelastic Models

A meshless model, based on the Meshless Local Petrov-Galerkin (MLPG) approach, is developed and implemented in parallel for the solution of axi-symmetric poroelastic problems. The parallel code is based on a concurrent construction of the stiffness matrix by the processors and on a parallel preconditioned iterative method of Krylov type for the solution of the resulting linear system. The performance of the code is investigated on a realistic application concerning the prediction of land subsidence above a deep compacting reservoir. The overall code is shown to obtain a very high parallel efficiency (larger than 78% for the solution phase) and it is successfully applied to the solution of a poroelastic problem with a fine discretization which produces a linear system with more than 6 million equations using up to 512 processors on the HPCx supercomputer.

[1]  S. Atluri,et al.  The Meshless Local Petrov-Galerkin (MLPG) Method: A Simple \& Less-costly Alternative to the Finite Element and Boundary Element Methods , 2002 .

[2]  T. Belytschko,et al.  A new implementation of the element free Galerkin method , 1994 .

[3]  S. Atluri,et al.  The meshless local Petrov-Galerkin (MLPG) method , 2002 .

[4]  Giuseppe Gambolati,et al.  Stress–strain analysis in productive gas/oil reservoirs , 1999 .

[5]  Andy A. Nikishin,et al.  Prefiltration technique via aggregation for constructing low‐density high‐quality factorized sparse approximate inverse preconditionings , 2003, Numer. Linear Algebra Appl..

[6]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[7]  Guangyao Li,et al.  A Finite Volume Meshless Local Petrov-Galerkin Method for Topology Optimization Design of the Continuum Structures , 2009 .

[8]  William H. Peirce,et al.  NUMERICAL INTEGRATION OVER THE PLANAR ANNULUS , 1957 .

[9]  Marco Vianello,et al.  A Parallel Exponential Integrator for Large-Scale Discretizations of Advection-Diffusion Models , 2005, PVM/MPI.

[10]  Annamaria Mazzia,et al.  Accurate MLPG solution for 3D potential problems , 2008 .

[11]  Michele Benzi,et al.  A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems , 1998, SIAM J. Sci. Comput..

[12]  Luca Bergamaschi,et al.  Parallel Acceleration of Krylov Solvers by Factorized Approximate Inverse Preconditioners , 2004, VECPAR.

[13]  Michele Benzi,et al.  Robust Approximate Inverse Preconditioning for the Conjugate Gradient Method , 2000, SIAM J. Sci. Comput..

[14]  Domenico Baù,et al.  Importance of poroelastic coupling in dynamically active aquifers of the Po River Basin, Italy , 2000 .

[15]  Satya N. Atluri,et al.  Analysis of Transient Heat Conduction in 3D Anisotropic Functionally Graded Solids, by the MLPG Method , 2008 .

[16]  Igor E. Kaporin,et al.  New convergence results and preconditioning strategies for the conjugate gradient method , 1994, Numer. Linear Algebra Appl..

[17]  Weiran Yuan,et al.  Application of Meshless Local Petrov-Galerkin (MLPG) Method in Cloth Simulation , 2008 .

[18]  Marcus J. Grote,et al.  Parallel Preconditioning with Sparse Approximate Inverses , 1997, SIAM J. Sci. Comput..

[19]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[20]  Q. W. Ma,et al.  A new meshless interpolation scheme for MLPG_R method , 2008 .

[21]  Lily Yu. Kolotilina,et al.  Factorized sparse approximate inverse preconditionings. IV: Simple approaches to rising efficiency , 1999, Numer. Linear Algebra Appl..

[22]  L. Kolotilina,et al.  Factorized Sparse Approximate Inverse Preconditionings I. Theory , 1993, SIAM J. Matrix Anal. Appl..

[23]  Domenico Baù,et al.  Radioactive Marker Measurements in Heterogeneous Reservoirs: Numerical Study , 2004 .

[24]  M. Benzi,et al.  A comparative study of sparse approximate inverse preconditioners , 1999 .

[25]  Giuseppe Gambolati Second‐order theory of flow in three‐dimensional deforming media , 1974 .

[26]  Holger Wendland,et al.  Meshless Galerkin methods using radial basis functions , 1999, Math. Comput..

[27]  K. Bathe,et al.  The method of finite spheres , 2000 .

[28]  A. Yu. Yeremin,et al.  Factorized sparse approximate inverse preconditionings. IV: Simple approaches to rising efficiency , 1999 .

[29]  Marco Vianello,et al.  A massively parallel exponential integrator for advection-diffusion models , 2009, J. Comput. Appl. Math..

[30]  G. Gambolati,et al.  Casing Influence in Reservoir Compaction Measurement by Radioactive Markers in the Northern Adriatic, Italy , 2007 .

[31]  J. Geertsma,et al.  Land subsidence above compacting oil and gas reservoirs , 1973 .

[32]  Pu Chen,et al.  A New Quasi-Unsymmetric Sparse Linear Systems Solver for Meshless Local Petrov-Galerkin Method (MLPG) , 2007 .

[33]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[34]  T. Jarak Analysis of rectangular square plates by the mixed Meshless Local Petrov-Galerkin (MLPG) approach , 2008 .

[35]  Giuseppe Gambolati,et al.  A meshless method for axi‐symmetric poroelastic simulations: numerical study , 2007 .

[36]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .