Effective Value of the Dynamic Dilution Exponent in Bidisperse Linear Polymers: from 1 to 4/3

We revisit previously published dielectric and viscoelastic data of binary blends of linear cis-polyisoprene [Watanabe, H.; Ishida, S.; Matsumiya, Y.; Inoue, T. Macromolecules2004, 37, 6619] in order to test the validity of the dynamic tube dilution (DTD) picture and to determine the most appropriate value of the dilution exponent α. We conclude that the DTD picture with α = 1 is more appropriate at short times, while at longer time, a larger exponent of α = 4/3 gives a better description of the experiments. Furthermore, between these two time regions, a broad crossover zone is found, going from an effective α = 1 to an effective α = 4/3. On the basis of this result, we propose to consider a new relaxation process, which is combined with the classical DTD picture with α = 1 to give the experimentally observed effective α = 4/3 at long times. This extra relaxation process results from the tension equilibration along the long chains, which takes place thanks to the blinking feature of release/reformation of...

[1]  Tadashi Inoue,et al.  Viscoelastic and dielectric behavior of entangled blends of linear polyisoprenes having widely separated molecular weights test of tube dilation picture , 2004 .

[2]  Effect of equilibration on primitive path analyses of entangled polymers. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  R. Larson Combinatorial Rheology of Branched Polymer Melts , 2001 .

[4]  G. Marrucci Relaxation by reptation and tube enlargement: A model for polydisperse polymers , 1985 .

[5]  Pavlos S. Stephanou,et al.  Quantifying chain reptation in entangled polymer melts: topological and dynamical mapping of atomistic simulation results onto the tube model. , 2010, The Journal of chemical physics.

[6]  R. Larson,et al.  Comparing tube models for predicting the linear rheology of branched polymer melts , 2010 .

[7]  Tadashi Inoue,et al.  Test of Full and Partial Tube Dilation Pictures in Entangled Blends of Linear Polyisoprenes , 2004 .

[8]  Gengxin Liu,et al.  Relaxation Dynamics in Mixtures of Long and Short Chains: Tube Dilation and Impeded Curvilinear Diffusion , 2003 .

[9]  R. Larson,et al.  Primitive Path Identification and Statistics in Molecular Dynamics Simulations of Entangled Polymer Melts , 2005 .

[10]  T. Watanabe,et al.  Viscoelasticity and extensional rheology of model Cayley-tree polymers of different generations , 2010 .

[11]  R. Ball,et al.  Dynamic dilution and the viscosity of star-polymer melts , 1989 .

[12]  L. G. Leal,et al.  Linear Rheology of Architecturally Complex Macromolecules: Comb Polymers with Linear Backbones , 2005 .

[13]  Yumi Matsumiya,et al.  Rheodielectric Behavior of Entangled cis-Polyisoprene under Fast Shear , 2002 .

[14]  V. Mavrantzas,et al.  Primitive Path Identification and Entanglement Statistics in Polymer Melts: Results from Direct Topological Analysis on Atomistic Polyethylene Models , 2006 .

[15]  T. McLeish,et al.  Dynamic Dilution, Constraint-Release, and Star-Linear Blends , 1998 .

[16]  J. D. Cloizeaux Double reptation vs. simple reptation in polymer melts (Erratum) , 1988 .

[17]  Sachin Shanbhag,et al.  Chain retraction potential in a fixed entanglement network. , 2005, Physical review letters.

[18]  D. Vlassopoulos,et al.  Viscoelastic and Dielectric Relaxation of a Cayley-Tree-Type Polyisoprene: Test of Molecular Picture of Dynamic Tube Dilation , 2008 .

[19]  T. McLeish,et al.  Parameter-Free Theory for Stress Relaxation in Star Polymer Melts , 1997 .

[20]  S. Milner Predicting the Tube Diameter in Melts and Solutions , 2005 .

[21]  G. Marin,et al.  Concentration and molecular weight dependence of viscoelastic properties in linear and star polymers , 1981 .

[22]  T. McLeish,et al.  Elongational flow of blends of long and short polymers: effective stretch relaxation time. , 2009, Physical review letters.

[23]  H. Watanabe Viscoelasticity and dynamics of entangled polymers , 1999 .

[24]  Yumi Matsumiya,et al.  Constraint Release in Star/Star Blends and Partial Tube Dilation in Monodisperse Star Systems , 2006 .

[25]  P. Gennes Reptation of a Polymer Chain in the Presence of Fixed Obstacles , 1971 .

[26]  T. McLeish Tube theory of entangled polymer dynamics , 2002 .

[27]  R. Keunings,et al.  A general methodology to predict the linear rheology of branched polymers , 2006 .

[28]  C. Tsenoglou Molecular weight polydispersity effects on the viscoelasticity of entangled linear polymers , 1991 .

[29]  F. Greco,et al.  Brownian simulations of a network of reptating primitive chains , 2001 .

[30]  Doros N. Theodorou,et al.  Topological Analysis of Linear Polymer Melts: A Statistical Approach , 2006 .

[31]  R. Larson,et al.  Dilution exponent in the dynamic dilution theory for polymer melts , 2003 .

[32]  Michael Rubinstein,et al.  Two-parameter scaling for polymers in Θ solvents , 1990 .

[33]  L. G. Leal,et al.  Stress Relaxation of Comb Polymers with Short Branches , 2009 .

[34]  Daniel Read,et al.  Computational linear rheology of general branch-on-branch polymers , 2006 .

[35]  Nikos Hadjichristidis,et al.  Entangled Dendritic Polymers and Beyond: Rheology of Symmetric Cayley-Tree Polymers and Macromolecular Self-Assemblies , 2007 .

[36]  O. Urakawa,et al.  Slow Dielectric Relaxation of Entangled Linear cis-Polyisoprenes with Asymmetrically Inverted Dipoles. 2. Behavior in a Short Matrix , 1994 .

[37]  Tadashi Inoue,et al.  Dielectric and Viscoelastic Relaxation of Highly Entangled Star Polyisoprene: Quantitative Test of Tube Dilation Model , 2002 .

[38]  T. Kotaka,et al.  Viscoelastic properties and relaxation mechanisms of binary blends of narrow molecular weight distribution polystyrenes , 1984 .

[39]  Ronald G. Larson,et al.  Direct Calculation of the Tube Potential Confining Entangled Polymers , 2006 .

[40]  R. Larson,et al.  A hierarchical algorithm for predicting the linear viscoelastic properties of polymer melts with long-chain branching , 2005 .

[41]  K. Osaki,et al.  Comparison of Dielectric and Viscoelastic Relaxation Functions of cis-Polyisoprenes: Test of Tube Dilation Molecular Picture , 2000 .

[42]  Martin Kröger,et al.  Projection from an atomistic chain contour to its primitive path , 2002 .

[43]  R. Larson,et al.  Tube dilation and reptation in binary blends of monodisperse linear polymers , 2004 .

[44]  R. Larson,et al.  Long-chain dynamics in binary blends of monodisperse linear polymers , 2006 .

[45]  D. Vlassopoulos,et al.  Linear rheology of comb polymers with star-like backbones: melts and solutions , 2006 .