Power harvesting from transverse galloping of square cylinder

[1]  D. Weaver Flow-induced vibration , 2014 .

[2]  Ali H. Nayfeh,et al.  Sensitivity analysis of piezoaeroelastic energy harvesters , 2012 .

[3]  Ali H. Nayfeh,et al.  Enhancement of power harvesting from piezoaeroelastic systems , 2012 .

[4]  Ali H. Nayfeh,et al.  Design of piezoaeroelastic energy harvesters , 2012 .

[5]  Ali H. Nayfeh,et al.  Modeling and analysis of piezoaeroelastic energy harvesters , 2012 .

[6]  Muhammad R. Hajj,et al.  Effects of nonlinear piezoelectric coupling on energy harvesters under direct excitation , 2012 .

[7]  Muhammad R. Hajj,et al.  Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters , 2012 .

[8]  Abdessattar Abdelkefi,et al.  An energy harvester using piezoelectric cantilever beams undergoing coupled bending–torsion vibrations , 2011 .

[9]  Alper Erturk,et al.  Enhanced aeroelastic energy harvesting by exploiting combined nonlinearities: theory and experiment , 2011 .

[10]  A. Barrero-Gil,et al.  Energy harvesting from transverse galloping , 2010 .

[11]  Daniel J. Inman,et al.  Piezoaeroelastic Modeling and Analysis of a Generator Wing with Continuous and Segmented Electrodes , 2010 .

[12]  Daniel J. Inman,et al.  On the energy harvesting potential of piezoaeroelastic systems , 2010 .

[13]  Ephrahim Garcia,et al.  Energy harvesting: a key to wireless sensor nodes , 2009, International Conference on Smart Materials and Nanotechnology in Engineering.

[14]  A. Barrero-Gil,et al.  Transverse galloping at low Reynolds numbers , 2009 .

[15]  A. Barrero-Gil,et al.  Hysteresis in transverse galloping: The role of the inflection points , 2009 .

[16]  Daniel J. Inman,et al.  A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters , 2008 .

[17]  D. Inman,et al.  On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters , 2008 .

[18]  Henry A. Sodano,et al.  A review of power harvesting using piezoelectric materials (2003–2006) , 2007 .

[19]  Daniel J. Inman,et al.  Towards autonomous sensing , 2006, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[20]  J. Meseguer,et al.  Galloping instabilities of two-dimensional triangular cross-section bodies , 2005 .

[21]  P. Wright,et al.  A piezoelectric vibration based generator for wireless electronics , 2004 .

[22]  R. Haftka,et al.  Uncertainty-based Design Optimization of a Micro Piezoelectric Composite Energy Reclamation Device , 2004 .

[23]  D. Inman,et al.  A Review of Power Harvesting from Vibration using Piezoelectric Materials , 2004 .

[24]  E. P. Spencer,et al.  The amelioration of the suffering associated with spinal cord injury with subperception transcranial electrical stimulation , 2003, Spinal Cord.

[25]  P. Muralt Ferroelectric thin films for micro-sensors and actuators: a review , 2000 .

[26]  M. I. Kazakevich,et al.  Closed analytical solution for galloping aeroelastic self-oscillations , 1996 .

[27]  Ali H. Nayfeh,et al.  The Method of Normal Forms , 2011 .

[28]  G. V. Parkinson,et al.  Phenomena and modelling of flow-induced vibrations of bluff bodies , 1989 .

[29]  Hiroshi Tanaka,et al.  Effect of Turbulence on Galloping Instability , 1974 .

[30]  G. V. Parkinson,et al.  Mathematical models of flow induced vibrations of bluff bodies , 1974 .

[31]  M. Novak Aeroelastic Galloping of Prismatic Bodies , 1969 .

[32]  G. V. Parkinson,et al.  THE SQUARE PRISM AS AN AEROELASTIC NON-LINEAR OSCILLATOR , 1964 .

[33]  A. P,et al.  Mechanical Vibrations , 1948, Nature.