Holographic imaging of unlabelled sperm cells for semen analysis: a review

Male reproductive health in both humans and animals is an important research field in biological study. In order to characterize the morphology, the motility and the concentration of the sperm cells, which are the most important parameters to feature them, digital holography demonstrated to be an attractive technique. Indeed, it is a label-free, non-invasive and high-resolution method that enables the characterization of live specimen. The review is intended both for summarizing the state-of-art on the semen analysis and recent achievement obtained by means of digital holography and for exploring new possible applications of digital holography in this field. Quantitative phase maps of living swimming spermatozoa.

[1]  W Xu,et al.  Digital in-line holography for biological applications , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Giancarlo Pedrini,et al.  Aberration compensation in digital holographic reconstruction of microscopic objects , 2001 .

[3]  G Di Caprio,et al.  Quantitative Label-Free Animal Sperm Imaging by Means of Digital Holographic Microscopy , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[4]  Aydogan Ozcan,et al.  High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories , 2012, Proceedings of the National Academy of Sciences.

[5]  M. Gross,et al.  Dark-field digital holographic microscopy for 3D-tracking of gold nanoparticles. , 2011, Optics express.

[6]  Pinhas Girshovitz,et al.  Doubling the field of view in off-axis low-coherence interferometric imaging , 2014, Light: Science & Applications.

[7]  P Memmolo,et al.  Digital holography as a method for 3D imaging and estimating the biovolume of motile cells. , 2013, Lab on a chip.

[8]  R. Kiss,et al.  Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration. , 2006, Journal of biomedical optics.

[9]  Chun-Min Lo,et al.  High-resolution quantitative phase-contrast microscopy by digital holography. , 2005, Optics express.

[10]  H. Kreuzer,et al.  Immersion digital in-line holographic microscopy. , 2006, Optics letters.

[11]  Bahram Javidi,et al.  Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography. , 2005, Optics express.

[12]  Jia Qika An Analysis of Nonlinear Harmonic Generation in High Gain Free-Electron Laser , 2007, IEEE Journal of Quantum Electronics.

[13]  43 , 2014, Fetch the Devil.

[14]  Pietro Ferraro,et al.  Wave front reconstruction of Fresnel off-axis holograms with compensation of aberrations by means of phase-shifting digital holography , 2002 .

[15]  Zach DeVito,et al.  Opt , 2017 .

[16]  Myung K. Kim Digital Holographic Microscopy: Principles, Techniques, and Applications , 2011 .

[17]  E. Cuche,et al.  Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. , 2005, Optics letters.

[18]  J. Selva,et al.  Correlation between DNA defect and sperm-head morphology. , 2012, Reproductive biomedicine online.

[19]  J. Carneiro,et al.  Strategies for locating the female gamete: the importance of measuring sperm trajectories in three spatial dimensions , 2011, Molecular human reproduction.

[20]  L. Johnson,et al.  The morphological and ultrastructural appearance of the crater defect in stallion spermatozoa , 1985 .

[21]  Tae Joong Eom,et al.  Tomographic imaging of a suspending single live cell using optical tweezer-combined full-field optical coherence tomography. , 2012, Optics letters.

[22]  H Ohzu,et al.  Hybrid holographic microscopy free of conjugate and zero-order images. , 1999, Applied optics.

[23]  Frank Dubois,et al.  Automated three-dimensional detection and classification of living organisms using digital holographic microscopy with partial spatial coherent source: application to the monitoring of drinking water resources. , 2013, Applied optics.

[24]  M. Tomlinson,et al.  Validation of sperm counting methods using limits of agreement. , 2006, Journal of andrology.

[25]  Byoungho Lee,et al.  Plasmonic Light Beaming Manipulation and its Detection Using Holographic Microscopy , 2010, IEEE Journal of Quantum Electronics.

[26]  A. Baleta A second chance for microbicides , 2007, The Lancet.

[27]  Luca De Stefano,et al.  Optical Properties of Diatom Nanostructured Biosilica in Arachnoidiscus sp: Micro-Optics from Mother Nature , 2014, PloS one.

[28]  M. Allen,et al.  The natural subcellular surface structure of the bovine sperm cell. , 1995, Journal of structural biology.

[29]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[30]  Fernando Vargas-Martin,et al.  Quantitative phase microscopy of transparent samples using a liquid crystal display , 2013, Journal of biomedical optics.

[31]  Bill Bynum,et al.  Lancet , 2015, The Lancet.

[32]  S T Mortimer,et al.  CASA--practical aspects. , 2000, Journal of andrology.

[33]  R J Pieper,et al.  Image processing for extended depth of field. , 1983, Applied optics.

[34]  A. Zini,et al.  Sperm head morphology is related to high deoxyribonucleic acid stainability assessed by sperm chromatin structure assay. , 2009, Fertility and sterility.

[35]  L. P. IAroslavskiĭ,et al.  Digital holography and digital image processing : principles, methods, algorithms , 2010 .

[36]  J. Toppari,et al.  Sperm morphological defects related to environment, lifestyle and medical history of 1001 male partners of pregnant women from four European cities. , 2001, Human reproduction.

[37]  Pietro Ferraro,et al.  4D tracking of clinical seminal samples for quantitative characterization of motility parameters. , 2014, Biomedical optics express.

[38]  P Memmolo,et al.  Identification of bovine sperm head for morphometry analysis in quantitative phase-contrast holographic microscopy. , 2011, Optics express.

[39]  Pavel Ventruba,et al.  Digital holographic microscopy in human sperm imaging , 2011, Journal of Assisted Reproduction and Genetics.

[40]  Bo Sun,et al.  Flow visualization and flow cytometry with holographic video microscopy. , 2009 .

[41]  G. Whitesides,et al.  Fabrication of microfluidic systems in poly(dimethylsiloxane) , 2000, Electrophoresis.

[42]  Zeev Zalevsky,et al.  Spatially-multiplexed interferometric microscopy (SMIM): converting a standard microscope into a holographic one. , 2014, Optics express.

[43]  Yona Barak,et al.  Real-time fine morphology of motile human sperm cells is associated with IVF-ICSI outcome. , 2002, Journal of andrology.

[44]  宮内 吉男,et al.  第21回徳島医学会賞受賞論文 徳島市におけるもの忘れ検診--4年間の結果と展望 , 2008 .

[45]  R. Oko,et al.  Abnormal Morphology of Bovine Spermatozoa , 1991 .

[46]  Giuseppe Coppola,et al.  Digital holographic microscopy characterization of superdirective beam by metamaterial. , 2012, Optics letters.

[47]  Gabriel Popescu,et al.  Optical imaging of cell mass and growth dynamics. , 2008, American journal of physiology. Cell physiology.

[48]  J. Parinaud,et al.  Relationships between motility parameters, morphology and acrosomal status of human spermatozoa. , 1996, Human reproduction.

[49]  E. S. E. Hafez,et al.  Reproduction in farm animals , 1974 .

[50]  U. Schnars,et al.  Direct recording of holograms by a CCD target and numerical reconstruction. , 1994, Applied optics.

[51]  K. Bedu-Addo,et al.  Counting sperm does not add up any more: time for a new equation? , 2007, Reproduction.

[52]  G. Coppola,et al.  A digital holographic microscope for complete characterization of microelectromechanical systems , 2004 .

[53]  G. Popescu Quantitative Phase Imaging of Cells and Tissues , 2011 .

[54]  YongKeun Park,et al.  Quantitative phase imaging unit. , 2014, Optics letters.

[55]  S. Oehninger,et al.  Predictive value of abnormal sperm morphology in in vitro fertilization. , 1988, Fertility and sterility.

[56]  Pietro Ferraro,et al.  Dynamic DIC by digital holography microscopy for enhancing phase-contrast visualization , 2011, Biomedical optics express.

[57]  D. Alspach A gaussian sum approach to the multi-target identification-tracking problem , 1975, Autom..

[58]  Elizabeth Noonan,et al.  World Health Organization reference values for human semen characteristics. , 2010, Human reproduction update.

[59]  Abigail Beckel Hum , 2017 .

[60]  Luca De Stefano,et al.  Shedding light on diatom photonics by means of digital holography. , 2014, Journal of biophotonics.

[61]  E. Caspi,et al.  Estimating fertility potential via semen analysis data. , 1993, Human reproduction.

[62]  R. Oliva Protamines and male infertility. , 2006, Human reproduction update.

[63]  B. Fisch,et al.  The relationship between sperm ultrastructural features and fertilizing capacity in vitro. , 1992, Fertility and sterility.

[64]  D. Beebe,et al.  The present and future role of microfluidics in biomedical research , 2014, Nature.

[65]  A Finizio,et al.  Digital self-referencing quantitative phase microscopy by wavefront folding in holographic image reconstruction. , 2010, Optics letters.

[66]  D. Franken The clinical significance of sperm-zona pellucida binding. , 1998, Frontiers in bioscience : a journal and virtual library.

[67]  Andrew G. Glen,et al.  APPL , 2001 .

[68]  Zeev Zalevsky,et al.  Superresolution digital holographic microscopy for three-dimensional samples. , 2008, Optics express.

[69]  Pietro Ferraro,et al.  Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging. , 2003, Applied optics.

[70]  W. Bishara,et al.  Lens-free optical tomographic microscope with a large imaging volume on a chip , 2011, Proceedings of the National Academy of Sciences.

[71]  P. Devroey,et al.  Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte , 1992, The Lancet.

[72]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.