On a quantitative reversal of Alexandrov’s inequality

Alexandrov’s inequalities imply that for any convex body A A , the sequence of intrinsic volumes V 1 ( A ) , … , V n ( A ) V_1(A),\ldots ,V_n(A) is non-increasing (when suitably normalized). Milman’s random version of Dvoretzky’s theorem shows that a large initial segment of this sequence is essentially constant, up to a critical parameter called the Dvoretzky number. We show that this near-constant behavior actually extends further, up to a different parameter associated with A A . This yields a new quantitative reverse inequality that sits between the approximate reverse Urysohn inequality, due to Figiel–Tomczak–Jaegermann and Pisier, and the sharp reverse Urysohn inequality for zonoids, due to Hug–Schneider. In fact, we study concentration properties of the volume radius and mean width of random projections of A A and show how these lead naturally to such reversals.

[1]  R. Schneider,et al.  Reverse inequalities for zonoids and their application , 2011 .

[2]  Variance estimates and almost Euclidean structure , 2017, Advances in Geometry.

[3]  Keith Ball,et al.  Volume Ratios and a Reverse Isoperimetric Inequality , 1989, math/9201205.

[4]  G. Paouris,et al.  On Dvoretzky's theorem for subspaces of L , 2015, Journal of Functional Analysis.

[5]  M. Ledoux The concentration of measure phenomenon , 2001 .

[6]  G. Paouris,et al.  Gaussian Convex Bodies: a Nonasymptotic Approach , 2019, Journal of Mathematical Sciences.

[7]  Mark Rudelson,et al.  Convex bodies with minimal mean width , 2000 .

[8]  Bo'az Klartag,et al.  Small ball probability and Dvoretzky’s Theorem , 2004, math/0410001.

[9]  V. Milman,et al.  Averages of norms and quasi-norms , 1998 .

[10]  R. Schneider Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .

[11]  Nicole Tomczak-Jaegermann,et al.  Projections onto Hilbertian subspaces of Banach spaces , 1979 .

[12]  Grigoris Paouris,et al.  Small-Ball Probabilities for the Volume of Random Convex Sets , 2013, Discret. Comput. Geom..

[13]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[14]  G. Pisier The volume of convex bodies and Banach space geometry , 1989 .

[15]  G. Pisier Probabilistic methods in the geometry of Banach spaces , 1986 .

[16]  Bo'az Klartag,et al.  A geometric inequality and a low M-estimate , 2004 .

[17]  K. Ball CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .

[18]  V. Milman,et al.  New volume ratio properties for convex symmetric bodies in ℝn , 1987 .

[19]  B. Tsirelson A Geometrical Approach to Maximum Likelihood Estimation for Infinite-Dimensional Gaussian Location. I , 1983 .

[20]  Joel Zinn,et al.  Random version of Dvoretzky’s theorem in ℓpn , 2017 .

[21]  F. John Extremum Problems with Inequalities as Subsidiary Conditions , 2014 .

[22]  Stanisław Kwapień,et al.  A Remark on the Median and the Expectation of Convex Functions of Gaussian Vectors , 1994 .

[23]  J. Zinn,et al.  A central limit theorem for projections of the cube , 2012, 1210.7012.

[24]  V. Milman,et al.  Asymptotic Geometric Analysis, Part I , 2015 .

[25]  G. Paouris,et al.  A Gaussian small deviation inequality for convex functions , 2016, 1611.01723.

[26]  G. Pisier Remarques sur un résultat non publié de B. Maurey , 1981 .

[27]  Estimates for the affine and dual affine quermassintegrals of convex bodies , 2012 .

[28]  A small deviation inequality for convex functions , 2016 .