Two-way one-counter automata accepting bounded languages

We show that languages such as <i>&Ltilde;</i> = {0<i><sup>n</sup></i>1<sup><i>n</i><sup>2</sup></sup>|<i>n</i>&ge; 1} and <i>&Lcirc;</i> = {0<i><sup>n</sup></i>1<sup>2<sup><i>n</i></sup></sup>|<i>n</i>&ge; 1} can be accepted by deterministic two-way one-counter automata.

[1]  Two-way counter machines and Diophantine equations , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[2]  Zvi Galil,et al.  Fooling a two Way Automaton or one Pushdown Store is better than one Counter for two Way Machines , 1982, Theor. Comput. Sci..

[3]  Eitan M. Gurari,et al.  Two-Way Counter Machines and Diophantine Equations , 1982, JACM.

[4]  Wojciech Rytter,et al.  Analysis of algorithms and data structures , 1991, International computer science series.

[5]  Burkhard Monien Deterministic Two-Way One-Head Pushdown Automata are Very Powerful , 1984, Inf. Process. Lett..