Discrete transparent boundary conditions for the two-dimensional leap-frog scheme

We develop a general strategy in order to implement (approximate) discrete transparent boundary conditions for finite difference approximations of the two-dimensional transport equation. The computational domain is a rectangle equipped with a Cartesian grid. For the two-dimensional leapfrog scheme, we explain why our strategy provides with explicit numerical boundary conditions on the four sides of the rectangle and why it does not require prescribing any condition at the four corners of the computational domain. The stability of the numerical boundary condition on each side of the rectangle is analyzed by means of the so-called normal mode analysis. Numerical investigations for the full problem on the rectangle show that strong instabilities may occur when coupling stable strategies on each side of the rectangle. Other coupling strategies yield promising results.

[1]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[2]  L. Trefethen Instability of difference models for hyperbolic initial boundary value problems , 1984 .

[3]  G. Beylkin,et al.  Approximation by exponential sums revisited , 2010 .

[4]  David Sanchez,et al.  Discrete transparent boundary conditions for the mixed KDV-BBM equation , 2016, J. Comput. Phys..

[5]  Chi-Wang Shu,et al.  Inverse Lax-Wendroff procedure for numerical boundary conditions of conservation laws , 2010, J. Comput. Phys..

[6]  Matthias Ehrhardt,et al.  Discrete transparent boundary conditions for the Schrödinger equation , 2001 .

[7]  G. A. Baker Essentials of Padé approximants , 1975 .

[8]  J. Smoller,et al.  Geometrical optics and the corner problem , 1974 .

[9]  Antoine Benoit Geometric optics expansions for hyperbolic corner problems, I: Self-interaction phenomenon , 2016 .

[10]  Christophe Besse,et al.  A Review of Transparent and Artificial Boundary Conditions Techniques for Linear and Nonlinear Schrödinger Equations , 2008 .

[11]  Sylvie Benzoni-Gavage,et al.  Multi-dimensional hyperbolic partial differential equations , 2006 .

[12]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[13]  Chi-Wang Shu,et al.  Development and stability analysis of the inverse Lax−Wendroff boundary treatment for central compact schemes , 2015 .

[14]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[15]  G. Beylkin,et al.  On approximation of functions by exponential sums , 2005 .

[16]  Chang Yang,et al.  An inverse Lax-Wendroff method for boundary conditions applied to Boltzmann type models , 2012, J. Comput. Phys..

[17]  Andreas Dedner,et al.  Transparent boundary conditions for MHD simulations in stratified atmospheres , 2001 .

[18]  Laurence Halpern,et al.  Absorbing boundary conditions for the discretization schemes of the one-dimensional wave equation , 1982 .

[19]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[20]  Moshe Goldberg On a boundary extrapolation theorem by Kreiss , 1977 .

[21]  S. Osher An ill posed problem for a hyperbolic equation near a corner , 1973 .

[22]  Matthias Ehrhardt,et al.  Discrete transparent boundary conditions for the Schrödinger equation: fast calculation, approximation, and stability , 2003 .

[23]  Initial-boundary value problems for hyperbolic systems in regions with corners. II , 1973 .

[24]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[25]  Jean-François Coulombel,et al.  Transparent numerical boundary conditions for evolution equations: Derivation and stability analysis , 2016, Annales de la faculté des sciences de Toulouse Mathématiques.

[26]  H. Kreiss,et al.  Time-Dependent Problems and Difference Methods , 1996 .

[27]  J. Baker Counter-examples to the Baker-Gammel-Wills conjecture and patchwork convergence , 2005 .

[28]  Matthias Ehrhardt,et al.  Discrete transparent boundary conditions for the Schr ¨ odinger equation on circular domains , 2012 .

[29]  L. Trefethen Group velocity in finite difference schemes , 1981 .

[30]  Heinz-Otto Kreiss,et al.  Difference approximations for hyperbolic differential equations , 1966 .

[31]  A. V. Popov,et al.  Implementation of transparent boundaries for numerical solution of the Schrödinger equation , 1991 .

[32]  Christophe Besse,et al.  Artificial boundary conditions for the linearized Benjamin–Bona–Mahony equation , 2018, Numerische Mathematik.

[33]  S. Osher Initial-boundary value problems for hyperbolic systems in regions with corners. II , 1973 .

[34]  Bruno Després,et al.  Inverse Lax-Wendroff boundary treatment for compressible Lagrange-remap hydrodynamics on Cartesian grids , 2018, J. Comput. Phys..

[35]  David Gottlieb,et al.  Stability of two-dimensional initial-boundary value problems using leap-frog type schemes , 1979 .

[36]  Sylvie Benzoni-Gavage,et al.  Multidimensional hyperbolic partial differential equations : first-order systems and applications , 2006 .

[37]  Chi-Wang Shu,et al.  Inverse Lax–Wendroff Procedure for Numerical Boundary Treatment of Hyperbolic Equations , 2017 .

[38]  P. Lax,et al.  Difference schemes for hyperbolic equations with high order of accuracy , 1964 .