A theory of moving form perception: Synergy between masking, perceptual grouping, and motion computation in retinotopic and non-retinotopic representations.

Because object and self-motion are ubiquitous in natural viewing conditions, understanding how the human visual system achieves a relatively clear perception for moving objects is a fundamental problem in visual perception. Several studies have shown that the visible persistence of a briefly presented stationary stimulus is approximately 120 ms under normal viewing conditions. Based on this duration of visible persistence, we would expect moving objects to appear highly blurred. However, in human vision, objects in motion typically appear relatively sharp and clear. We suggest that clarity of form in dynamic viewing is achieved by a synergy between masking, perceptual grouping, and motion computation across retinotopic and non-retinotopic representations. We also argue that dissociations observed in masking are essential to create and maintain this synergy.

[1]  Haluk Öğmen,et al.  Target recovery in metacontrast: The effect of contrast , 2006, Vision Research.

[2]  Bruno G. Breitmeyer,et al.  On the role of stroboscopic motion in metacontrast , 1981 .

[3]  C. A. Marzi,et al.  A possible selective impairment of magnocellular function in compression of the anterior visual pathways , 1999, Experimental Brain Research.

[4]  J Timothy Petersik,et al.  The Evolution of Explanations of a Perceptual Phenomenon: A Case History Using the Ternus Effect , 2006, Perception.

[5]  J. Enns Visual binding in the standing wave illusion , 2002, Psychonomic bulletin & review.

[6]  S. Anstis,et al.  Distortions in moving figures viewed through a stationary slit. , 1967, The American journal of psychology.

[7]  V. Lollo,et al.  Suppression of visible persistence in apparent motion , 1985, Perception & psychophysics.

[8]  B. Amblard,et al.  Backward and forward masking in the perception of cutaneous stimuli , 1973 .

[9]  A Pantle,et al.  A multistable movement display: evidence for two separate motion systems in human vision. , 1976, Science.

[10]  Hans-Jochen Heinze,et al.  The effect of retinal stabilization on anorthoscopic percepts under free-viewing conditions , 2005, Vision Research.

[11]  Alan C. Evans,et al.  The Neural Substrate of Picture Naming , 1999, Journal of Cognitive Neuroscience.

[12]  D. Heeger,et al.  Retinotopy and Functional Subdivision of Human Areas MT and MST , 2002, The Journal of Neuroscience.

[13]  Grossberg,et al.  A neural architecture for visual motion perception: group and element apparent motion , 1989 .

[14]  Harold E. Bedell,et al.  A target in real motion appears blurred in the absence of other proximal moving targets , 1995, Vision Research.

[15]  P. A. Kolers Aspects of motion perception , 1972 .

[16]  P. A. Kolers,et al.  On visual masking (metacontrast): dichoptic observation. , 1960, The American journal of psychology.

[17]  Karl J. Friston,et al.  A direct quantitative relationship between the functional properties of human and macaque V5 , 2000, Nature Neuroscience.

[18]  T. Parks POST-RETINAL VISUAL STORAGE. , 1965, The American journal of psychology.

[19]  A. T. Smith,et al.  Sharpening of drifting, blurred images , 1995, Vision Research.

[20]  Michael R. W. Dawson,et al.  Simultaneity in the Ternus configuration: psychophysical data and a computer model , 1994, Vision Research.

[21]  Zijiang J. He,et al.  Perceptual Organization of Apparent Motion in the Ternus Display , 1999, Perception.

[22]  Lester A. Lefton,et al.  Metacontrast: A review. , 1973 .

[23]  S. Edelman,et al.  Differential Processing of Objects under Various Viewing Conditions in the Human Lateral Occipital Complex , 1999, Neuron.

[24]  M. C. Smith,et al.  Detection in metacontrast. , 1966, Journal of experimental psychology.

[25]  Shinsuke Shimojo,et al.  Dynamic Shape Integration in Extrastriate Cortex , 2002, Current Biology.

[26]  M. Morgan,et al.  Effects of motion on blur discrimination , 1994 .

[27]  S Zeki,et al.  The autonomy of the visual systems and the modularity of conscious vision. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[28]  J. Ternus Experimentelle Untersuchungen über phänomenale Identität , 1926 .

[29]  Dean G. Purcell,et al.  U-shaped masking functions in visual backward masking: Effects of target configuration and retinal position , 1970 .

[30]  S. Edelman,et al.  Cue-Invariant Activation in Object-Related Areas of the Human Occipital Lobe , 1998, Neuron.

[31]  G. Francis Cortical Dynamics of Lateral Inhibition: Metacontrast Masking , 1997 .

[32]  J Timothy Petersik,et al.  Do variables that affect similar bistable apparent-movement displays result in similar changes in perception? , 2003, Spatial vision.

[33]  Christof Koch,et al.  Fusion of competing features is not serial , 2003, Vision Research.

[34]  C Koch,et al.  Seeing properties of an invisible object: Feature inheritance and shine-through , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Haluk Ogmen,et al.  The what and where in visual masking , 2003, Vision Research.

[36]  V C Smith,et al.  Temporal and spatial interactions involved in the band movement phenomenon. , 1969, Vision research.

[37]  S. Nishida Motion-Based Analysis of Spatial Patterns by the Human Visual System , 2004, Current Biology.

[38]  M J Watkins,et al.  The seeing-more-than-is-there phenomenon: implications for the locus of iconic storage. , 1978, Journal of experimental psychology. Human perception and performance.

[39]  S. Edelman,et al.  Human Brain Mapping 6:316–328(1998) � A Sequence of Object-Processing Stages Revealed by fMRI in the Human Occipital Lobe , 2022 .

[40]  S Zeki,et al.  Parallelism and functional specialization in human visual cortex. , 1990, Cold Spring Harbor symposia on quantitative biology.

[41]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[42]  D C Van Essen,et al.  Shifter circuits: a computational strategy for dynamic aspects of visual processing. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[43]  C Casco,et al.  The Relationship between Space and Time in the Perception of Stimuli Moving behind a Slit , 1984, Perception.

[44]  T. Sohmiya,et al.  Where Does an Anorthoscopic Image Appear? , 1992, Perceptual and motor skills.

[45]  W Richards,et al.  “Seeing” shapes that are almost totally occluded: A new look at Parks’s camel , 1986, Perception & psychophysics.

[46]  B. Breitmeyer,et al.  Recent models and findings in visual backward masking: A comparison, review, and update , 2000, Perception & psychophysics.

[47]  N. Kanwisher,et al.  Cortical Regions Involved in Perceiving Object Shape , 2000, The Journal of Neuroscience.

[48]  T. Allison,et al.  Face recognition in human extrastriate cortex. , 1994, Journal of neurophysiology.

[49]  K. Grill-Spector,et al.  The dynamics of object-selective activation correlate with recognition performance in humans , 2000, Nature Neuroscience.

[50]  D. G. Albrecht,et al.  Spikes versus BOLD: what does neuroimaging tell us about neuronal activity? , 2000, Nature Neuroscience.

[51]  T. Allison,et al.  Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli. , 1999, Cerebral cortex.

[52]  Stephen T. Hammett PII: S0042-6989(97)00059-X , 2002 .

[53]  D. Raab,et al.  Reaction time to stimuli masked by metacontrast. , 1962, Journal of experimental psychology.

[54]  Harold E. Bedell,et al.  PII: S0042-6989(97)00350-7 , 1998 .

[55]  Shelford Bidwell Curiosities of Light and Sight , 1899, Nature.

[56]  F. Zöllner,et al.  Ueber eine neue Art anorthoskopischer Zerrbilder , 1862 .

[57]  M J Morgan,et al.  Motion deblurring in human vision , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[58]  Mina Kim,et al.  Combining Functional and Diffusion Tensor MRI , 2005, Annals of the New York Academy of Sciences.

[59]  Talis Bachmann Psychophysiology of Visual Masking: The Fine Structure of Conscious Experience , 1994 .

[60]  Ravi S. Menon,et al.  Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements. , 2001, Journal of neurophysiology.

[61]  D. Burr,et al.  Seeing objects in motion , 1986, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[62]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[63]  R. Haber,et al.  Direct estimates of the apparent duration of a flash. , 1970 .

[64]  W. McDougall THE SENSATIONS EXCITED BY A SINGLE MOMENTARY STIMULATION OF THE EYE , 1904 .

[65]  Saumil S. Patel,et al.  Color and motion: which is the tortoise and which is the hare? , 2003, Vision Research.

[66]  Jonathan A. Marshall,et al.  Unsmearing Visual Motion: Development of Long-Range Horizontal Intrinsic Connections , 1992, NIPS.

[67]  Eric Castet,et al.  Effect of the ISI on the visible persistence of a stimulus in apparent motion , 1994, Vision Research.

[68]  A. Treisman,et al.  Illusory conjunctions in the perception of objects , 1982, Cognitive Psychology.

[69]  S Zeki,et al.  Localization and globalization in conscious vision. , 2001, Annual review of neuroscience.

[70]  M Jeannerod,et al.  Visual pathways for object-oriented action and object recognition: functional anatomy with PET. , 1997, Cerebral cortex.

[71]  V. Lollo,et al.  Suppression of visible persistence as a function of spatial separation between inducing stimuli , 1987, Perception & psychophysics.

[72]  John H Hogben,et al.  Suppression of visible persistence. , 1985, Journal of experimental psychology. Human perception and performance.

[73]  H. Werner Studies on Contour: I. Qualitative Analyses , 1935 .

[74]  Haluk Öğmen,et al.  Perceptual grouping induces non-retinotopic feature attribution in human vision , 2006, Vision Research.

[75]  Colin W G Clifford,et al.  Determinants of asynchronous processing in vision , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[76]  S. Mateeff,et al.  Multi-aperture viewing: perception of figures through very small apertures , 1993, Vision Research.

[77]  B G Breitmeyer,et al.  Implications of sustained and transient channels for theories of visual pattern masking, saccadic suppression, and information processing. , 1976, Psychological review.

[78]  D. Mewhort,et al.  When do letter features migrate? A boundary condition for feature-integration theory , 1991, Perception & psychophysics.

[79]  V C Smith,et al.  Scotopic and photopic functions for visual band movement. , 1969, Vision research.

[80]  A. Stewart,et al.  Visual backward masking by a flash of light: a study of u-shaped detection functions. , 1974, Journal of experimental psychology.

[81]  T. Poggio,et al.  Visual hyperacuity: spatiotemporal interpolation in human vision , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[82]  Joyce E. Farrell,et al.  The visible persistence of stimuli in stroboscopic motion , 1990, Vision Research.

[83]  Harold E Bedell,et al.  Suppression of motion-produced smear during smooth pursuit eye movements , 1996, Current Biology.

[84]  Naomi Weisstein,et al.  Metacontrast as a function of spatial separation with narrow line targets and masks , 1977, Vision Research.

[85]  S. Grossberg,et al.  Cortical dynamics of feature binding and reset: Control of visual persistence , 1994, Vision Research.

[86]  John J. Foxe,et al.  Activation Timecourse of Ventral Visual Stream Object-recognition Areas: High Density Electrical Mapping of Perceptual Closure Processes , 2000, Journal of Cognitive Neuroscience.

[87]  T. Sohmiya,et al.  What is a crucial determinant in anorthoscopic perception? , 1994, Perceptual and motor skills.

[88]  A. Stoper,et al.  Relation of split apparent motion to metacontrast. , 1977, Journal of experimental psychology. Human perception and performance.

[89]  Harold E. Bedell,et al.  Asymmetry of perceived motion smear during head and eye movements: Evidence for a dichotomous neural categorization of retinal image motion , 2005, Vision Research.

[90]  Stephen Grossberg,et al.  A neural architecture for visual motion perception: group and element apparent motion , 1989, International 1989 Joint Conference on Neural Networks.

[91]  B G Breitmeyer,et al.  Metacontrast investigations of sustained-transient channel inhibitory interactions. , 1981, Journal of experimental psychology. Human perception and performance.

[92]  Haluk Ogmen,et al.  A neural theory of retino-cortical dynamics , 1993 .

[93]  J. Lund,et al.  Compulsory averaging of crowded orientation signals in human vision , 2001, Nature Neuroscience.

[94]  N. F. Dixon,et al.  The attenuation of visual persistence. , 1972, British journal of psychology.

[95]  Ralph Norman Haber,et al.  Post-retinal storage? Some further observations on Parks’ camel as seen through the eye of a needle , 1968 .

[96]  Jean Lorenceau,et al.  The inverse intensity effect is not lost with stimuli in apparent motion , 1993, Vision Research.

[97]  J. Farrell Visible persistence of moving objects. , 1984, Journal of experimental psychology. Human perception and performance.

[98]  M. Coltheart,et al.  Iconic memory and visible persistence , 1980, Perception & psychophysics.

[99]  Thomas U. Otto,et al.  The flight path of the phoenix--the visible trace of invisible elements in human vision. , 2006, Journal of vision.

[100]  J M Findlay,et al.  Aperture Viewing*: A Review and a Synthesis , 1982, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[101]  David C Burr,et al.  Feature-based integration of orientation signals in visual search , 2000, Vision Research.

[102]  Kees Teunissen,et al.  Perceived sharpness in complex moving images , 1995 .

[103]  S. Yantis,et al.  Perceptual grouping in space and time: Evidence from the Ternus display , 1997, Perception & psychophysics.

[104]  J. Sergent,et al.  Functional neuroanatomy of face and object processing. A positron emission tomography study. , 1992, Brain : a journal of neurology.

[105]  John Schlag,et al.  A new form of illusory conjunction between color and shape , 2010 .