Invariant Polytopes of Sets of Matrices with Application to Regularity of Wavelets and Subdivisions

We generalize the recent invariant polytope algorithm for computing the joint spectral radius and extend it to a wider class of matrix sets. This, in particular, makes the algorithm applicable to sets of matrices that have finitely many spectrum maximizing products. A criterion of convergence of the algorithm is proved. As an application we solve two challenging computational open problems. First we find the regularity of the Butterfly subdivision scheme for various parameters $\omega$. In the “most regular” case $\omega = \frac{1}{16}$, we prove that the limit function has Holder exponent 2 and its derivative is “almost Lipschitz” with logarithmic factor 2. Second we compute the Holder exponent of Daubechies wavelets of high order.

[1]  Yang Wang,et al.  Bounded semigroups of matrices , 1992 .

[2]  Y. Nesterov,et al.  On the accuracy of the ellipsoid norm approximation of the joint spectral radius , 2005 .

[3]  V. Protasov The generalized joint spectral radius. A geometric approach , 1997 .

[4]  L. Elsner The generalized spectral-radius theorem: An analytic-geometric proof , 1995 .

[5]  R. Jungers The Joint Spectral Radius: Theory and Applications , 2009 .

[6]  Nira Dyn,et al.  Optimising 3D Triangulations: Improving the Initial Triangulation for the Butterfly Subdivision Scheme , 2005, Advances in Multiresolution for Geometric Modelling.

[7]  Carla Manni,et al.  Convergence analysis of C2 Hermite interpolatory subdivision schemes by explicit joint spectral radius formulas , 2011 .

[8]  C. Micchelli,et al.  Stationary Subdivision , 1991 .

[9]  G. Gripenberg COMPUTING THE JOINT SPECTRAL RADIUS , 1996 .

[10]  Vincent D. Blondel,et al.  Computationally Efficient Approximations of the Joint Spectral Radius , 2005, SIAM J. Matrix Anal. Appl..

[11]  H. Wilf,et al.  Uniqueness theorems for periodic functions , 1965 .

[12]  U. Reif,et al.  A tree-based approach to joint spectral radius determination , 2014 .

[13]  J. Tsitsiklis,et al.  The boundedness of all products of a pair of matrices is undecidable , 2000 .

[14]  D. Levin,et al.  Normals of the butterfly subdivision scheme surfaces and their applications , 1999 .

[15]  U. Reif,et al.  C1-continuity of the generalized four-point scheme , 2009 .

[16]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[17]  Vincent D. Blondel,et al.  Joint Spectral Characteristics of Matrices: A Conic Programming Approach , 2010, SIAM J. Matrix Anal. Appl..

[18]  Nicola Guglielmi,et al.  Finding Extremal Complex Polytope Norms for Families of Real Matrices , 2009, SIAM J. Matrix Anal. Appl..

[19]  T. Andô,et al.  Simultaneous Contractibility , 1998 .

[20]  M. Zennaro,et al.  Balanced Complex Polytopes and Related Vector and Matrix Norms , 2007 .

[21]  P. Cifuentes,et al.  Characterization of scaling functions in a multiresolution analysis , 2004 .

[22]  Thierry BLUzAbstract SIMPLE REGULARITY CRITERIA FOR SUBDIVISION SCHEMES , 1997 .

[23]  I. Daubechies,et al.  Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .

[24]  G. Rota,et al.  A note on the joint spectral radius , 1960 .

[25]  John N. Tsitsiklis,et al.  Approximating the spectral radius of sets of matrices in the max-algebra is NP-hard , 2000, IEEE Trans. Autom. Control..

[26]  M. SIAMJ. CHARACTERIZATIONS OF SCALING FUNCTIONS: CONTINUOUS SOLUTIONS∗ , 1994 .

[27]  I. Daubechies,et al.  A new technique to estimate the regularity of refinable functions , 1996 .

[28]  A. Jadbabaie,et al.  Approximation of the joint spectral radius using sum of squares , 2007, 0712.2887.

[29]  Владимир Юрьевич Протасов,et al.  Фрактальные кривые и всплески@@@Fractal curves and wavelets , 2006 .

[30]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[31]  Nicola Guglielmi,et al.  On the asymptotic properties of a family of matrices , 2001 .

[32]  Nicola Guglielmi,et al.  Exact Computation of Joint Spectral Characteristics of Linear Operators , 2011, Found. Comput. Math..

[33]  Fabian R. Wirth,et al.  Complex Polytope Extremality Results for Families of Matrices , 2005, SIAM J. Matrix Anal. Appl..

[34]  Gilles Deslauriers,et al.  Symmetric iterative interpolation processes , 1989 .

[35]  Nicola Guglielmi,et al.  Stability of Linear Problems: Joint Spectral Radius of Sets of Matrices , 2014 .

[36]  L. Villemoes Wavelet analysis of refinement equations , 1994 .

[37]  S. Dubuc Interpolation through an iterative scheme , 1986 .

[38]  Gene H. Golub,et al.  Matrix computations , 1983 .

[39]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .