Realistic simulations of gravitational lensing by galaxy clusters: extracting arc parameters from mock DUNE images

Aims. We present a newly developed code that allows simulations of optical observations of galaxy fields with a variety of instr uments. The code incorporates gravitational lensing effects and is targetted at simulating lensing by galaxy cluste rs. Our goal is to create the tools required for comparing theoretical expectations with observations to obtain a better understanding of how observational noise affects lensing applications such as mass estimates, studies on the internal properties o f galaxy clusters and arc statistics. Methods. Starting from a set of input parameters, characterizing bot h the instruments and the observational conditions, the simulator provides a virtual observation of a patch of the sky. It includes sever al sources of noise such as photon-noise, sky background, seeing, and instrumental noise. Ray-tracing through simulated mass distributions accounts for gravitational lensing. Source morphologies are realistically simulated based on shapelet decompositions of galaxy images retrieved from the GOODS-ACS archive. According to their morphological class, spectralenergy-distributions are assigned to the source galaxies i n order to reproduce observations of each galaxy in arbitrary photometric bands. Results. We illustrate our techniques showing virtual observations of a galaxy-cluster core as it would be observed with the space telescope DUNE, which was recently proposed to ESA within its ”Cosmic vision” programme. We analyze the simulated images using methods applicable to real observations and measure the properties of gravitat ional arcs. In particular, we focus on the determination of t heir length, width and curvature radius. Conclusions. We find that arc properties strongly depend on several proper ties of the sources. In particular, our results show that com pact, faint or low surface brightness galaxies that are barely detectab le are more easily distorted as arcs with large length-to-wi dth ratios. We conclude that realistic lensing simulations can be obtained with the method proposed here. They will be essential for evaluating and improving analysis techniques currently used for cosmological interpretatio ns of cluster lensing.

[1]  A. Mazure,et al.  The VIMOS VLT deep survey , 2008, 0903.0271.

[2]  Alexandre Refregier,et al.  Image simulation with shapelets , 2003, astro-ph/0301449.

[3]  M. Meneghetti,et al.  cD galaxy contribution to the strong lensing cross-sections of galaxy clusters , 2003, astro-ph/0302603.

[4]  J. Kneib,et al.  Astronomy & Astrophysics manuscript no. (will be inserted by hand later) Constraining the Cosmological Parameters using Strong Lensing , 2001 .

[5]  F. Vazza,et al.  Turbulent gas motions in galaxy cluster simulations: the role of smoothed particle hydrodynamics viscosity , 2005 .

[6]  P. Schechter An analytic expression for the luminosity function for galaxies , 1976 .

[7]  Max Tegmark,et al.  Combined reconstruction of weak and strong lensing data with wslap , 2005, astro-ph/0509103.

[8]  L. Moscardini,et al.  Combining weak and strong lensing in cluster potential reconstruction , 2005, astro-ph/0511694.

[9]  R. Ellis,et al.  The Shear TEsting Programme 2: Factors affecting high precision weak lensing analyses , 2006, astro-ph/0608643.

[10]  L. Moscardini,et al.  Measuring and modelling the redshift evolution of clustering: the Hubble Deep Field North , 1999, astro-ph/9902290.

[11]  Is the Number of Giant Arcs in ΛCDM Consistent with Observations , 2005, astro-ph/0503172.

[12]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[13]  T. Treu,et al.  A Systematic Search for Gravitationally Lensed Arcs in the Hubble Space Telescope WFPC2 Archive , 2005, astro-ph/0502528.

[14]  G. de Vaucouleurs,et al.  Systematics of Bulge-to-Disk Ratios , 1986 .

[15]  G. Lucia,et al.  The hierarchical formation of the brightest cluster galaxies , 2006, astro-ph/0606519.

[16]  M. Meneghetti,et al.  The impact of gas physics on strong cluster lensing , 2005, astro-ph/0504206.

[17]  Constraints on dark energy models from galaxy clusters with multiple arcs , 2004, astro-ph/0409030.

[18]  M. Giavalisco,et al.  The Great Observatories Origins Deep Survey: Initial results from optical and near-infrared imaging , 2003, astro-ph/0309105.

[19]  M. Oguri,et al.  Arc Statistics in Triaxial Dark Matter Halos: Testing the Collisionless Cold Dark Matter Paradigm , 2003, astro-ph/0306102.

[20]  D. Zaritsky,et al.  On the Incidence of Strong Gravitational Lensing by Clusters in the Las Campanas Distant Cluster Survey , 2002, astro-ph/0210352.

[21]  The Dark Matter Distribution in the Central Regions of Galaxy Clusters , 2003, astro-ph/0309465.

[22]  Testing the reliability of weak lensing cluster detections , 2007, astro-ph/0702031.

[23]  M. Meneghetti,et al.  The impact of cluster mergers on arc statistics , 2003, astro-ph/0310898.

[24]  M. Meneghetti,et al.  Giant cluster arcs as a constraint on the scattering cross-section of dark matter , 2000, astro-ph/0011405.

[25]  Weak Lensing Mass Reconstruction of the Galaxy Cluster Abell 209 , 2007, astro-ph/0701799.

[26]  P. Hall,et al.  The Incidence of Strong-Lensing Clusters in the Red-Sequence Cluster Survey , 2003, astro-ph/0303341.

[27]  Jean-Luc Starck,et al.  Weak lensing mass reconstruction using wavelets , 2005, astro-ph/0503373.

[28]  J. Miralda-Escudé Statistics of highly magnified gravitational images in clusters of galaxies. I - Implications for the clusters. II - Implications for the sources , 1993 .

[29]  A. Mazure,et al.  The VIMOS VLT deep survey - First epoch VVDS-deep survey: 11 564 spectra with 17.5 $\leq$ I$_\textit{\textbf{\small AB}}$ $\leq$ 24, and the redshift distribution over 0 $\leq$ z $\leq$ 5 , 2004, astro-ph/0409133.

[30]  Otmar Scherzer,et al.  Robust Reconstruction from Chopped and Nodded Images , 2005 .

[31]  Padova,et al.  Populating a cluster of galaxies - I. Results at z=0 , 2000, astro-ph/0012055.

[32]  Arcfinder: an algorithm for the automatic detection of gravitational arcs , 2006, astro-ph/0607547.

[33]  H. Hoekstra,et al.  The Shear Testing Programme – I. Weak lensing analysis of simulated ground-based observations , 2005, astro-ph/0506112.

[34]  M. Meneghetti,et al.  Arc sensitivity to cluster ellipticity, asymmetries, and substructures , 2006, astro-ph/0606006.

[35]  Mass Distributions of HST Galaxy Clusters from Gravitational Arcs , 2005, astro-ph/0511330.

[36]  Matthias Bartelmann,et al.  Weak gravitational lensing , 2005 .

[37]  Brandon C. Kelly,et al.  Morphological Classification of Galaxies by Shapelet Decomposition in the Sloan Digital Sky Survey , 2004 .

[38]  A. Mazure,et al.  The VIMOS-VLT deep survey - Evolution of the galaxy luminosity function up to z = 2 in first epoch data , 2004, astro-ph/0409134.

[39]  M. Meneghetti,et al.  STRONG LENSING EFFICIENCY OF GALAXY CLUSTERS IN DARK ENERGY COSMOLOGIES , 2005 .

[40]  J. Wambsganss,et al.  Giant Arc Statistics in Concord with a Concordance Lambda Cold Dark Matter Universe , 2003, astro-ph/0306088.

[41]  J. Brinchmann,et al.  The VIMOS VLT deep survey - the ultraviolet galaxy luminosity function and luminosity density at 3 ≤ z ≤ 4 , 2006, astro-ph/0608176.

[42]  The Lensed Arc Production Efficiency of Galaxy Clusters: A Comparison of Matched Observed and Simulated Samples , 2005, astro-ph/0507454.

[43]  A. Réfrégier Shapelets: I. a method for image analysis , 2001, astro-ph/0105178.

[44]  R. Cabanac,et al.  The CFHTLS Strong Lensing Legacy Survey , 2006 .

[45]  Stefano Gallozzi,et al.  The Large Binocular Camera Image Simulator , 2004 .

[46]  D. Bacon,et al.  Galaxy-Galaxy Flexion: Weak Lensing to Second Order , 2004, astro-ph/0406376.

[47]  U. Florida,et al.  Weak-Lensing Mass Reconstruction of the Interacting Cluster 1E 0657–558: Direct Evidence for the Existence of Dark Matter , 2003, astro-ph/0312273.

[48]  V. Petrosian,et al.  Luminous arcs in clusters of galaxies , 1989 .

[49]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[50]  Donald E. Knuth,et al.  Metafont: The Program , 1986 .

[51]  L. Ho,et al.  Detailed structural decomposition of galaxy images , 2002, astro-ph/0204182.

[52]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[53]  Konrad Kuijken,et al.  A Faint Star-forming System Viewed through the Lensing Cluster Abell 2218: First Light at z ≃ 5.6? , 2001, astro-ph/0109249.

[54]  Massimo Stiavelli,et al.  The Hubble Ultra Deep Field , 2003, astro-ph/0607632.

[55]  Richard S. Ellis,et al.  A Probable z ~ 7 Galaxy Strongly Lensed by the Rich Cluster A2218: Exploring the Dark Ages* , 2004 .

[56]  A fast method for computing strong-lensing cross sections: application to merging clusters , 2005, astro-ph/0507093.

[57]  J. Hennawi,et al.  Noise in Strong Lensing Cosmography , 2004, astro-ph/0409028.

[58]  Do arcs require flat halo cusps , 2003, astro-ph/0312011.

[59]  Gepi,et al.  The CFHTLS strong lensing legacy survey - I. Survey overview and T0002 release sample , 2006, astro-ph/0610362.

[60]  M. Meneghetti,et al.  Reliable shapelet image analysis , 2006, astro-ph/0608369.

[61]  Arc Statistics in Cosmological Models with Dark Energy , 2002, astro-ph/0210066.

[62]  M. Lombardi,et al.  Strong & Weak Lensing United: the Cluster Mass Distribution of RX J1347–1145 , 2004, Proceedings of the International Astronomical Union.

[63]  Smooth Particle Lensing , 2006, astro-ph/0604360.

[64]  S.Paltani,et al.  The VIMOS VLT Deep Survey. Evolution of the luminosity functions by galaxy type up to z = 1.5 from f , 2005, astro-ph/0506393.