A selection of useful theoretical tools for the design and analysis of optimization heuristics

An intensive practical experimentation is certainly required for the purpose of heuristics design and evaluation, however a theoretical approach is also important in this area of research. This paper gives a brief description of a selection of theoretical tools that can be used for designing and analyzing various heuristics. For design and evaluation, we consider several examples of preprocessing procedures and probabilistic instance analysis methods. We also discuss some attempts at the theoretical explanation of successes and failures of certain heuristics.

[1]  Gregory Gutin,et al.  Polynomial approximation algorithms for the TSP and the QAP with a factorial domination number , 2002, Discret. Appl. Math..

[2]  Abraham P. Punnen,et al.  The traveling salesman problem and its variations , 2007 .

[3]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[4]  Abraham P. Punnen,et al.  TSP Heuristics: Domination Analysis and Complexity , 2003, Algorithmica.

[5]  Carlos A. S. Oliveira,et al.  Asymptotic Properties of Random Multidimensional Assignment Problems , 2004 .

[6]  Jing Huang,et al.  Worst Case Analysis of Max-Regret, Greedy and Other Heuristics for Multidimensional Assignment and Traveling Salesman Problems , 2006, WAOA.

[7]  David S. Johnson,et al.  The Traveling Salesman Problem: A Case Study in Local Optimization , 2008 .

[8]  Martin Charles Golumbic,et al.  Graph Theory, Combinatorics and Algorithms: Interdisciplinary Applications , 2011 .

[9]  Robert E. Bixby,et al.  Solving Real-World Linear Programs: A Decade and More of Progress , 2002, Oper. Res..

[10]  Natalio Krasnogor,et al.  Emergence of profitable search strategies based on a simple inheritance mechanism , 2001 .

[11]  Gerold Jäger,et al.  Tolerance-based greedy algorithms for the traveling salesman problem , 2007 .

[12]  Gregory Gutin,et al.  Generalized Traveling Salesman Problem Reduction Algorithms , 2008, Algorithmic Oper. Res..

[13]  W. Hager,et al.  Large Scale Optimization : State of the Art , 1993 .

[14]  Abraham P. Punnen The traveling salesman problem: new polynomial approximation algorithms and domination analysis , 2001 .

[15]  Gerhard J. Woeginger,et al.  A study of exponential neighborhoods for the Travelling Salesman Problem and for the Quadratic Assignment Problem , 2000, Math. Program..

[16]  Dimitrios M. Thilikos,et al.  Invitation to fixed-parameter algorithms , 2007, Comput. Sci. Rev..

[17]  G. M. Gutin On an approach to solving the traveling salesman problem , 1984 .

[18]  David S. Johnson,et al.  Asymptotic experimental analysis for the Held-Karp traveling salesman bound , 1996, SODA '96.

[19]  Rolf Niedermeier,et al.  Invitation to data reduction and problem kernelization , 2007, SIGA.

[20]  Christos H. Papadimitriou,et al.  An approximation scheme for planar graph TSP , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[21]  Gilbert Laporte,et al.  A Branch and Bound Algorithm for a Class of Asymmetrical Vehicle Routeing Problems , 1992 .

[22]  James B. Orlin,et al.  Creating very large scale neighborhoods out of smaller ones by compounding moves , 2006, J. Heuristics.

[23]  R. Fourer Experience with a Primal Presolve Algorithm , 1994 .

[24]  G. Gutin,et al.  Exponential Neighborhoods and Domination Analysis for the TSP , 2007 .

[25]  J. K. Lenstra,et al.  Local Search in Combinatorial Optimisation. , 1997 .

[26]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[27]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[28]  John J. Bartholdi,et al.  A good submatrix is hard to find , 1982, Oper. Res. Lett..

[29]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[30]  Gregory Gutin,et al.  Domination Analysis of Combinatorial Optimization Algorithms and Problems , 2005 .

[31]  François Margot,et al.  Greedy-type resistance of combinatorial problems , 2006, Discret. Optim..

[32]  Funda Samanlioglu,et al.  A memetic random-key genetic algorithm for a symmetric multi-objective traveling salesman problem , 2008, Comput. Ind. Eng..

[33]  Noga Alon,et al.  The Probabilistic Method, Second Edition , 2004 .

[34]  Martin W. P. Savelsbergh,et al.  Preprocessing and Probing Techniques for Mixed Integer Programming Problems , 1994, INFORMS J. Comput..

[35]  Johann Hurink,et al.  Two very large-scale neighborhoods for single machine scheduling , 2007, OR Spectr..

[36]  Abraham P. Punnen,et al.  A survey of very large-scale neighborhood search techniques , 2002, Discret. Appl. Math..

[37]  Gregory Gutin,et al.  Local search heuristics for the multidimensional assignment problem , 2008, J. Heuristics.

[38]  Nalan Gülpinar,et al.  Extracting pure network submatrices in linear programs using signed graphs , 2004, Discret. Appl. Math..

[39]  Matteo Fischetti,et al.  A new ILP-based refinement heuristic for Vehicle Routing Problems , 2006, Math. Program..

[40]  Gregory Gutin,et al.  When the greedy algorithm fails , 2004, Discret. Optim..

[41]  P.-O. Gutman,et al.  On the generalized Wolf problem: Preprocessing of nonnegative large-scale linear programming problems with group constraints , 2007 .

[42]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[43]  Moshe Dror,et al.  A vehicle routing improvement algorithm comparison of a "greedy" and a matching implementation for inventory routing , 1986, Comput. Oper. Res..

[44]  James Smith,et al.  A tutorial for competent memetic algorithms: model, taxonomy, and design issues , 2005, IEEE Transactions on Evolutionary Computation.

[45]  Gregory Gutin,et al.  Greedy Like Algorithms for the Traveling Salesman and Multidimensional Assignment Problems , 2008 .

[46]  Harold W. Kuhn,et al.  The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.

[47]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[48]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[49]  J. Hurink An exponential neighborhood for a one-machine batching problem , 1999 .

[50]  Ge Xia,et al.  Simplicity is Beauty: Improved Upper Bounds for Vertex Cover , 2005 .

[51]  J. Beardwood,et al.  The shortest path through many points , 1959, Mathematical Proceedings of the Cambridge Philosophical Society.