DIFFUSION OF MAGNETIC ELEMENTS IN A SUPERGRANULAR CELL

Small scale magnetic fields (magnetic elements) are ubiquitous in the solar photosphere. Their interaction can provide energy to the upper atmospheric layers, and contribute to heat the solar corona. In this work, the dynamic properties of magnetic elements in the quiet Sun are investigated. The high number of magnetic elements detected in a supergranular cell allowed us to compute their displacement spectrum ((Δr){sup 2})∝τ{sup γ} (with γ > 0, and τ the time since the first detection), separating the contribution of the network (NW) and the internetwork (IN) regions. In particular, we found γ = 1.27 ± 0.05 and γ = 1.08 ± 0.11 in NW (at smaller and larger scales, respectively), and γ = 1.44 ± 0.08 in IN. These results are discussed in light of the literature on the topic, as well as the implications for the build-up of the magnetic network.

[1]  B. Pontieu,et al.  Chromospheric Alfvénic Waves Strong Enough to Power the Solar Wind , 2007, Science.

[2]  F. Berrilli,et al.  3D photospheric velocity field of a Supergranular cell , 2007, 0704.0578.

[3]  Francesco Berrilli,et al.  Spatial Clustering of Photospheric Structures , 2005 .

[4]  G. W. Simon,et al.  Velocity Fields in the Solar Atmosphere. III. Large-Scale Motions, the Chromospheric Network, and Magnetic Fields. , 1964 .

[5]  PERVASIVE LINEAR POLARIZATION SIGNALS IN THE QUIET SUN , 2012, 1207.0692.

[6]  R. Ishikawa,et al.  Hinode Observations of Magnetic Elements in Internetwork Areas , 2008, 0806.0345.

[7]  N. Weiss,et al.  Simulation of Large-Scale Flows at the Solar Surface , 1989 .

[8]  J. C. del Toro Iniesta,et al.  MESOGRANULATION AND THE SOLAR SURFACE MAGNETIC FIELD DISTRIBUTION , 2010, 1012.4481.

[9]  E. Hijano,et al.  DEAD CALM AREAS IN THE VERY QUIET SUN , 2012, 1206.4545.

[10]  S. Solanki,et al.  First evidence of interaction between longitudinal and transverse waves in solar magnetic elements , 2013, 1304.7088.

[11]  M. Stangalini,et al.  Photospheric supergranular flows and magnetic flux emergence , 2013, 1312.2477.

[12]  D. Del Moro,et al.  Solar granulation properties derived from three different time series , 2004 .

[13]  L. B. Rubio,et al.  ANALYSIS OF QUIET-SUN INTERNETWORK MAGNETIC FIELDS BASED ON LINEAR POLARIZATION SIGNALS , 2012, 1203.1440.

[14]  F. Berrilli,et al.  Statistical Properties of Synthetic Nanoflares , 2006 .

[15]  A. Ramos,et al.  Advection and dispersal of small magnetic elements in the very quiet Sun , 2011 .

[16]  Hannes Alfvén,et al.  Granulation, Magneto-Hydrodynamic Waves, and the Heating of the Solar Corona , 1947 .

[17]  S. Tsuneta,et al.  Emergence of Small-Scale Magnetic Loops in the Quiet-Sun Internetwork , 2007, 0708.0844.

[18]  P. Judge,et al.  Alfvén Waves in the Solar Corona , 2007, Science.

[19]  A. B. Hart Motions in the Sun at the Photospheric Level: VI. Large-Scale Motions in the Equatorial Region , 1956 .

[20]  L. B. Rubio,et al.  THE CONNECTION BETWEEN INTERNETWORK MAGNETIC ELEMENTS AND SUPERGRANULAR FLOWS , 2012, 2401.06720.

[21]  Juri Toomre,et al.  Evolution of Solar Supergranulation , 2004 .

[22]  F. Berrilli,et al.  The spectrum of kink-like oscillations of solar photospheric magnetic elements , 2013, 1310.2472.

[23]  D. Del Moro,et al.  DIFFUSION OF SOLAR MAGNETIC ELEMENTS UP TO SUPERGRANULAR SPATIAL AND TEMPORAL SCALES , 2013, 1305.4006.

[24]  Thierry Emonet,et al.  On the Interaction between Convection and Magnetic Fields , 2003 .

[25]  E. Parker Nanoflares and the solar X-ray corona , 1988 .

[26]  S. Cranmer,et al.  HEATING OF THE SOLAR CHROMOSPHERE AND CORONA BY ALFVÉN WAVE TURBULENCE , 2011, 1105.0402.

[27]  TURBULENT DIFFUSION IN THE PHOTOSPHERE AS DERIVED FROM PHOTOSPHERIC BRIGHT POINT MOTION , 2011 .

[28]  S. Solanki,et al.  Migration of Ca II H bright points in the internetwork , 2014, 1401.7522.